【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
【答案】①②④
【解析】
試題解析:①∵F是AD的中點(diǎn),
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故此選項(xiàng)正確;
延長EF,交CD延長線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點(diǎn),
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故②正確;
③∵EF=FM,
∴S△EFC=S△CFM,
∵M(jìn)C>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯(cuò)誤;
④設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故此選項(xiàng)正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且∠B=60°,過C作⊙O的切線l,與直徑AD的延長線交于點(diǎn)E,AF⊥l,垂足為F.
(1)求證:AC平分∠FAD;
(2)已知AF=3 ,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,與BA的延長線交于點(diǎn)D,DE⊥PO交PO延長線于點(diǎn)E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線;
(2)若PB=9,DB=12,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組
(1)請(qǐng)直接寫出方程的所有正整數(shù)解
(2)若方程組的解滿足x+y=0,求m的值
(3)無論實(shí)數(shù)m取何值,方程x-2y+mx+5=0總有一個(gè)固定的解,請(qǐng)直接寫出這個(gè)解?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲是一個(gè)大長方形剪去一個(gè)小長方形后形成的圖形,已知?jiǎng)狱c(diǎn) P 以每秒 2cm 的速度沿圖甲的邊框按從 B→C→D→E→F→A 的路徑移動(dòng),相應(yīng)的△ABP 的面積 S 與時(shí)間 t 之間 的關(guān)系如圖乙中的圖象表示.若 AB=6cm,則 b=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是一個(gè)長為 a,寬為 b 的長方形.現(xiàn)將相等的長方形若干,拼接組成如下圖 形.
(1)將圖①中所得的四塊長為 a,寬為 b 的小長方形拼成一個(gè)正方形(如圖②).請(qǐng)利用 圖②中陰影部分面積的不同表示方法,直接寫出代數(shù)式(a+b)2、(a﹣b)2、ab 之間的等量關(guān)系是 ;
(2)根據(jù)(2)題中的等量關(guān)系,解決如下問題:已知 m+n=6,mn=5,則 m﹣n= ;
(3)將圖①中的長方形和圖③中的兩個(gè)邊長分別為 a、b 的正方形若干個(gè),拼成如圖④的長方形,則圖④中的長方形的面積可以用兩種不同的方法表示,則關(guān)系式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠BAC=120°,以BC為邊向形外作等邊三角形△BCD,把△ABD繞著點(diǎn)D按順時(shí)針方向旋轉(zhuǎn)60°后得到△ECD,若AB=5,AC=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點(diǎn)C,且CD=BD.
(1)判斷BD與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)OA=3,OC=1時(shí),求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請(qǐng)?jiān)跈M線上和括號(hào)內(nèi)填上推導(dǎo)內(nèi)容或依據(jù).
如圖,已知 , ,求證: .
證明: (已知),
( ),
( ).
( ).
( ).
∵ (已知),
( ).
( ).
( ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com