【題目】如圖所示,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是⊙O的切線;
(2)若PB=9,DB=12,求⊙O的半徑.
【答案】
(1)證明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,
∴∠OBP=∠E=90°,
∵OB為圓的半徑,
∴PB為圓O的切線
(2)解:在Rt△PBD中,PB=9,DB=12,
根據(jù)勾股定理得:PD= =15,
∵PD與PB都為圓的切線,
∴PC=PB=9,
∴DC=PD﹣PC=15﹣9=6,
在Rt△CDO中,設OC=r,則有DO=12﹣r,
根據(jù)勾股定理得:(12﹣r)2=r2+62,
解得:r=4.5,
則圓的半徑為4.5
【解析】(1)由已知在△DEO和△PBO中,∠EDB=∠EPB及對頂角相等,得出∠OBP=∠E,再根據(jù)垂直的定義證得∠OBP是直角,即可得證。
(2)先在Rt△PBD中根據(jù)勾股定理求出PD的長,再根據(jù)切線長定理得出PC=PB,再轉(zhuǎn)化到Rt△CDO中根據(jù)勾股定理建立方程,即可求出圓的半徑。
【考點精析】通過靈活運用勾股定理的概念,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】為了倡導“節(jié)約用水,從我做起”,市政府決定對市直機關500戶家庭的用水情況作一次調(diào)查,市政府調(diào)查小組隨機抽查了其中100戶家庭一年的月平均用水量(單位:噸).并將調(diào)查結果繪制成了如圖所示的條形統(tǒng)計圖,則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.40,20
B.11,11
C.11,12
D.11,11.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=α.∠ABC與∠ACD的平分線交于點A1,得∠A1;∠A1BC與∠A1CD的平分線相交于點A2,得∠A2;…;∠A2019BC與∠A2019CD的平分線相交于點A2020,得∠A2020,則∠A2020=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度.△ABC的頂點都在正方形網(wǎng)格的格點上,且通過兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點C的對應點是直線上的格點C'.
(1)畫出△A'B'C';
(2)在BC上找一點P,使AP平分△ABC的面積;
(3)試在直線l上畫出所有的格點Q,使得由點A'、B'、C'、Q四點圍成的四邊形的面積為9.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,邊長為3的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點,F(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當A點第一次落在直線y=x上時停止旋轉(zhuǎn),旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖).在旋轉(zhuǎn)正方形OABC的過程中,△MBN的周長為________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結論中一定成立的是 (把所有正確結論的序號都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,放映幻燈時,通過光源,把幻燈片上的圖形放大到屏幕上,若光源到幻燈片的距離為20cm,到屏幕的距離為60cm,且幻燈片中的圖形的高度為6cm,則屏幕上圖形的高度為cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com