【題目】如圖甲是一個(gè)大長(zhǎng)方形剪去一個(gè)小長(zhǎng)方形后形成的圖形,已知?jiǎng)狱c(diǎn) P 以每秒 2cm 的速度沿圖甲的邊框按從 B→C→D→E→F→A 的路徑移動(dòng),相應(yīng)的△ABP 的面積 S 與時(shí)間 t 之間 的關(guān)系如圖乙中的圖象表示.若 AB=6cm,則 b=_______.
【答案】17
【解析】
根據(jù)題意得:動(dòng)點(diǎn)P在BC上運(yùn)動(dòng)的時(shí)間是4秒,又由動(dòng)點(diǎn)的速度,可得BC的長(zhǎng),又由AB=6cm,可以計(jì)算出△ABP的面積,計(jì)算可得a的值,根據(jù)圖象求出CD和DE的長(zhǎng),代入數(shù)據(jù)計(jì)算可得答案;計(jì)算BC+CD+DE+EF+FA的長(zhǎng)度,又由P的速度,計(jì)算可得b的值.
解:動(dòng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的時(shí)間為0到4秒,易得:BC=2cm/秒×4秒=8cm;
由圖可得:CD=2×2=4cm,DE=2×3=6cm,
∴AF=BC+DE=14cm,
又∵AB=6cm,
∴EF=AB﹣CD=2cm,
∴動(dòng)點(diǎn)P共運(yùn)動(dòng)了BC+CD+DE+EF+FA=8+4+6+2+14=34cm,
∵其速度是2cm/秒,
∴b=34÷2=17秒,
故答案為:17.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知長(zhǎng)方形紙片ABCD,點(diǎn)E在邊AB上,點(diǎn)F、G在邊CD上,連接EF、EG.將∠BEG對(duì)折,點(diǎn)B落在直線EG上的點(diǎn)B′處,得折痕EM;將∠AEF對(duì)折,點(diǎn)A落在直線EF上的點(diǎn)A′處,得折痕EN.
(1)如圖1,若點(diǎn)F與點(diǎn)G重合,求∠MEN的度數(shù);
(2)如圖2,若點(diǎn)G在點(diǎn)F的右側(cè),且∠FEG=30°,求∠MEN的度數(shù);
(3)若∠MEN=α,請(qǐng)直接用含α的式子表示∠FEG的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.△ABC的頂點(diǎn)都在正方形網(wǎng)格的格點(diǎn)上,且通過(guò)兩次平移(沿網(wǎng)格線方向作上下或左右平移)后得到△A'B'C',點(diǎn)C的對(duì)應(yīng)點(diǎn)是直線上的格點(diǎn)C'.
(1)畫出△A'B'C';
(2)在BC上找一點(diǎn)P,使AP平分△ABC的面積;
(3)試在直線l上畫出所有的格點(diǎn)Q,使得由點(diǎn)A'、B'、C'、Q四點(diǎn)圍成的四邊形的面積為9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,DC切⊙O于點(diǎn)C,若∠A=25°,則∠D等于( )
A.20°
B.30°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊ABCD中,AD=2AB,F是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論中一定成立的是 (把所有正確結(jié)論的序號(hào)都填在橫線上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從熱氣球C上測(cè)得兩建筑物A,B底部的俯角分別為30°和60度.如果這時(shí)氣球的高度CD為90米.且點(diǎn)A,D,B在同一直線上,求建筑物A,B間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BD,CE分別是AC,AB邊上的高,在BD上截取BF=AC,延長(zhǎng)CE至點(diǎn)G使CG=AB,連接AF,AG.
(1)如圖1,求證:AG=AF;
(2)如圖2,若BD恰好平分∠ABC,過(guò)點(diǎn)G作GH⊥AC交CA的延長(zhǎng)線于點(diǎn)H,請(qǐng)直接寫出圖中所有的全等三角形并用全等符號(hào)連接.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com