【題目】已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點,連接CF、BG.則下列結(jié)論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是( 。
A. ①②④ B. ③④ C. ①②③ D. ①②③④
【答案】A
【解析】
連接BD、OC、AG、AC,過O作OQ⊥CF于Q,OZ⊥BG于Z,求出∠ABC=∠ABD,從而有弧AC=弧AD,由垂徑定理的推論即可判斷①的正誤;
由CD⊥PB可得到∠P+∠PCD=90°,結(jié)合∠P=∠DCO、等邊對等角的知識等量代換可得到∠PCO=90°,據(jù)此可判斷②的正誤;假設OD∥GF成立,則可得到∠ABC=30°,判斷由已知條件能否得到∠ABC的度數(shù)即可判斷③的正誤;求出CF=AG,根據(jù)垂徑定理和三角形中位線的知識可得到CQ=OZ,通過證明△OCQ≌△BOZ可得到OQ=BZ,結(jié)合垂徑定理即可判斷④.
連接BD、OC、AG,過O作OQ⊥CF于Q,OZ⊥BG于Z,
∵OD=OB,
∴∠ABD=∠ODB,
∵∠AOD=∠OBD+∠ODB=2∠OBD,
∵∠AOD=2∠ABC,
∴∠ABC=∠ABD,
∴弧AC=弧AD,
∵AB是直徑,
∴CD⊥AB,
∴①正確;
∵CD⊥AB,
∴∠P+∠PCD=90°,
∵OD=OC,
∴∠OCD=∠ODC=∠P,
∴∠PCD+∠OCD=90°,
∴∠PCO=90°,
∴PC是切線,∴②正確;
假設OD∥GF,則∠AOD=∠FEB=2∠ABC,
∴3∠ABC=90°,
∴∠ABC=30°,
已知沒有給出∠B=30°,∴③錯誤;
∵AB是直徑,
∴∠ACB=90°,
∵EF⊥BC,
∴AC∥EF,
∴弧CF=弧AG,
∴AG=CF,
∵OQ⊥CF,OZ⊥BG,
∴CQ=AG,OZ=AG,BZ=BG,
∴OZ=CQ,
∵OC=OB,∠OQC=∠OZB=90°,
∴△OCQ≌△BOZ,
∴OQ=BZ=BG,
∴④正確.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為n的正方形OABC的邊OA,OC在坐標軸上,點A1,A2…An﹣1為OA的n等分點,點B1,B2…Bn﹣1為CB的n等分點,連結(jié)A1B1,A2B2,…An﹣1Bn﹣1,分別交曲線(x>0)于點C1,C2,…,Cn﹣1.若C15B15=16C15A15,則n的值為_______.(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一根長為10米的竹竿AB斜靠在垂直于地面的墻上(∠O=90°),竹竿AB的傾斜角為α.當竹竿的頂端A下滑到點A′時,竹竿的另一端B向右滑到了點B′,此時傾斜角為β,則線段AA'的長為_____米.當竹竿AB滑到A′B′位置時,AB的中點P滑到了A′B′的中點P′位置,則點P所經(jīng)過的路線長為_____米.(兩空格均用含α、的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1:中,、的平分線相交于點,過點作交、于、
(1)直接寫出圖1中所有的等腰三角形.指出與、間有怎樣的數(shù)量關系?
(2)在(1)的條件下,若,,求的周長;
(3)如圖2,若中,的平分線與三角形外角的平分線交于點,過點作交于,交于,請問(1)中與、間的關系還是否存在,若存在,說明理由:若不存在,寫出三者新的數(shù)量關系,并說明理由;
(4)如圖3,、的外角平分線的延長線相交于點,請直接寫出,、,之間的數(shù)量關系.不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠BCD=90°,將四邊形ABCD沿AB方向平移得到四邊形A'B'C'D',BC與C'D'相交于點E,若BC=8,CE=3,C'E=2,則陰影部分的面積為( )
A.12+2B.13C.2+6D.26
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.如圖,點A、B在⊙O上,直線AC是⊙O的切線,OD⊥OB,連接AB交OC于點D.
⑴求證:AC=CD
⑵若AC=2,AO=,求OD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)的某種產(chǎn)品按質(zhì)量分為個檔次,生產(chǎn)第一檔次(即最低檔次)的產(chǎn)品一天生產(chǎn)件,每件利潤元,每提高一個檔次,利潤每件增加元.
(1)每件利潤為元時,此產(chǎn)品質(zhì)量在第幾檔次?
(2)由于生產(chǎn)工序不同,此產(chǎn)品每提高一個檔次,一天產(chǎn)量減少件.若生產(chǎn)第檔的產(chǎn)品一天的總利潤為元(其中為正整數(shù),且≤≤),求出關于的函數(shù)關系式;若生產(chǎn)某檔次產(chǎn)品一天的總利潤為元,該工廠生產(chǎn)的是第幾檔次的產(chǎn)品?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.
(1)如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;
(2)如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com