【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在AD上,且ED=2AE.
(1)求證:△ABC∽△EAB.
(2)AC與BE交于點H,求HC的長.
【答案】(1)證明見解析;(2)HC=.
【解析】試題分析:(1)、根據(jù)矩形的性質(zhì)得出AB=CD=1,BC=AD=2,∠ABC=∠BAD=90°,根據(jù)ED=3AE得出AE=,ED=,從而得到,然后結(jié)合公共角得出三角形相似;(2)、根據(jù)三角形相似得出∠BHC=90°,根據(jù)Rt△ABC的面積相等得出BH的長度,然后根據(jù)Rt△BHC的勾股定理求出CH的長度.
試題解析:(1)、證明:∵四邊形ABCD是矩形,∴AB=CD=1,BC=AD=2,∠ABC=∠BAD=90°,
∴ED=3AE,∴AE=,ED=∵,∴,
∵∠ABC=∠BAE=90°,∴△ABC∽△EAB
(2)、∵△ABC∽△EAB,∴∠ACB=∠ABE,∵∠ABE+∠CBH=90°,∴∠ACB+∠CBE=90°,∴∠BHC=90° ∴BH⊥AC
在Rt△ACB中,∵∠ABC=90°,AB=1,BC=2,∴AC=,∵ ∴BH=,
∴CH=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.
(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)設(shè)國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,(即出廠價=基礎(chǔ)價+浮動價)其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長x成正比例,在營銷過程中得到了表格中的數(shù)據(jù),已知出廠一張邊長為40cm的薄板,獲得利潤是26元.(利潤=出廠價-成本價)
薄板的邊長(cm) | 20 | 30 |
出廠價(元/張) | 50 | 70 |
(1)求一張薄板的出廠價y與邊長x之間滿足的函數(shù)關(guān)系式;
(2)求一張薄板的利潤p與邊長x之間的函數(shù)關(guān)系式;
(3)若一張薄板的利潤是34元,且成本最低,此時薄板的邊長為多少?當(dāng)薄板的邊長為多少時,所獲利潤最大,求出這個最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,ABC的頂點都在格點上,在平面直角坐標(biāo)系。
⑴寫出點的坐標(biāo):點A ,點B ,點C .
⑵將ABC向右平移7個單位,再向下平移3個單位,得到A1B1C1,試在圖上畫出A1B1C1的圖形;
⑶求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實黨中央提出的“惠民政策”,我市今年計劃開發(fā)建設(shè)A、B兩種戶型的“廉租房”共40套.投入資金不低于270萬元,又不超過296萬元.開發(fā)建設(shè)辦公室預(yù)算:一套A型“廉租房”的造價為10萬元,一套B型“廉租房”的造價為4.8萬元.
(1)請問有幾種開發(fā)建設(shè)方案?
(2) 在投入資金最少的方案下,為了讓更多的人享受到“惠民”政策,開發(fā)建設(shè)辦公室決定通過縮小“廉租房”的面積來降低造價、節(jié)省資金.每套A戶型“廉租房”的造價降低1萬元,每套B戶型“廉租房”的造價降低0.3萬元,將節(jié)省下來的資金全部用于再次開發(fā)建設(shè)縮小面積后的“廉租房”,如果同時建設(shè)A、B兩種戶型,請你直接寫出再次開發(fā)建設(shè)的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式,兩項成績的原始分均為100分,前6名選手的得分如下:
根據(jù)規(guī)定,筆試成績和面試成績按一定的百分比折合成綜合成績(綜合成績的滿分仍為100分)
(1)這6名選手筆試成績的平均數(shù)是_____分,中位數(shù)是_____分,眾數(shù)是______分.
(2)現(xiàn)已知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績的百分比各為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則( )
A. DE=EB B. DE=EB C. DE=DO D. DE=OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解不等式|x+1|>2時,我們可以采用下面的解答方法:
①當(dāng)x+1≥0時,|x+1|=x+1.
∴由原不等式得x+1>2.∴可得不等式組
∴解得不等式組的解集為x>1.
②當(dāng)x+1<0時,|x+1|=﹣(x+1).
∴由原不等式得﹣(x+1)>2.∴可得不等式組
∴解得不等式組的解集為x<﹣3.
綜上所述,原不等式的解集為x>1或x<﹣3.
請你仿照上述方法,嘗試解不等式|x﹣2|≤1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我市某一天內(nèi)的氣溫變化圖,根據(jù)圖象,下列說法中錯誤的是( )
A.這一天中最高氣溫是26℃
B.這一天中最高氣溫與最低氣溫的差為16℃
C.這一天中2時至14時之間的氣溫在逐漸升高
D.這一天中14時至24時之間的氣溫在逐漸降低
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com