【題目】我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對(duì)這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國(guó)內(nèi)市場(chǎng)的日銷售量y1(萬件)與時(shí)間t(t為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示.而國(guó)外市場(chǎng)的日銷售量y2(萬件)與時(shí)間t(t為整數(shù),單位:天)的關(guān)系如圖所示.
(1)請(qǐng)你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;
(2)分別探求該產(chǎn)品在國(guó)外市場(chǎng)上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時(shí)間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)設(shè)國(guó)內(nèi)、外市場(chǎng)的日銷售總量為y萬件,寫出y與時(shí)間t的函數(shù)關(guān)系式,并判斷上市第幾天國(guó)內(nèi)、外市場(chǎng)的日銷售總量y最大,并求出此時(shí)的最大值.
【答案】(1)y1=﹣t(t﹣30)(0≤t≤30);(2)∴y2=;(3)上市第20天,國(guó)內(nèi)、外市場(chǎng)的日銷售總量y最大,最大值為80萬件.
【解析】試題分析:(1)、根據(jù)題意得出y1與t之間是二次函數(shù)關(guān)系,然后利用待定系數(shù)法求出函數(shù)解析式;(2)、利用待定系數(shù)法分別求出兩個(gè)函數(shù)解析式,從而得出答案;(3)、分0≤t<20、t=20和20≤t≤30三種情況根據(jù)y=y1+y2求出函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)得出最值,從而得出整體的最值.
試題解析:(1)、解:由圖表數(shù)據(jù)觀察可知y1與t之間是二次函數(shù)關(guān)系,
設(shè)y1=a(t﹣0)(t﹣30) 再代入t=5,y1=25可得: a=﹣
∴y1=﹣t(t﹣30)(0≤t≤30)
(2)、解:由函數(shù)圖象可知y2與t之間是分段的一次函數(shù)由圖象可知:
0≤t<20時(shí),y2=2t,當(dāng)20≤t≤30時(shí),y2=﹣4t+120,
∴y2=,
(3)、解:當(dāng)0≤t<20時(shí),y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2 ,
可知拋物線開口向下,t的取值范圍在對(duì)稱軸左側(cè),y隨t的增大而增大,所以最大值小于當(dāng)t=20時(shí)的值80,
當(dāng)20≤t≤30時(shí),y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2 ,
可知拋物線開口向下,t的取值范圍在對(duì)稱軸右側(cè),y隨t的增大而減小,所以最大值為當(dāng)t=20時(shí)的值80,
故上市第20天,國(guó)內(nèi)、外市場(chǎng)的日銷售總量y最大,最大值為80萬件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點(diǎn)M在y軸上的拋物線與直線y=x+1相交于A、B兩點(diǎn),且點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為2,連結(jié)AM、BM.
(1)求拋物線的函數(shù)關(guān)系式;
(2)判斷△ABM的形狀,并說明理由;
(3)把拋物線與直線y=x的交點(diǎn)稱為拋物線的不動(dòng)點(diǎn).若將(1)中拋物線平移,使其頂點(diǎn)為(m,2m),當(dāng)m滿足什么條件時(shí),平移后的拋物線總有不動(dòng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中 過點(diǎn)A作AE⊥DC,垂足為E,連接BE,F(xiàn)為BE上一點(diǎn),且∠AFE=∠D.
(1)求證:△ABF∽△BEC;
(2)若AD=5,AB=8,sinD=,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】藏族小伙小游到批發(fā)市場(chǎng)購(gòu)買牛肉,已知牦牛肉和黃牛肉的單價(jià)之和為每千克44元,小游準(zhǔn)備購(gòu)買牦牛肉和黃牛肉總共不超過120千克,其中黃牛肉至少購(gòu)買30千克,牦牛肉的數(shù)量不少于黃牛肉的2倍,粗心的小游在做預(yù)算時(shí)將牦牛肉和黃牛肉的價(jià)格弄對(duì)換了,結(jié)果實(shí)際購(gòu)買兩種牛肉的總價(jià)比預(yù)算多了224元,若牦牛肉、黃牛肉的單價(jià)和數(shù)量均為整數(shù),則小游實(shí)際購(gòu)買這兩種牛肉最多需要花費(fèi)______元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形中,,與交于,為延長(zhǎng)線上的一點(diǎn),且,連結(jié)分別交,于點(diǎn),,連結(jié)則下列結(jié)論:①;②與全等的三角形共有個(gè);③;④由點(diǎn),,,構(gòu)成的四邊形是菱形.其中正確的是( )
A.①④B.①③④C.①②③D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)的坐標(biāo)是,過作軸于,在軸正半軸上截取,連接.
(1)求點(diǎn)的坐標(biāo)及的解析式;
(2)過作于,求證:;
(3)關(guān)于軸的對(duì)稱點(diǎn)為,在上取點(diǎn),連接,動(dòng)點(diǎn)沿運(yùn)動(dòng),在上的運(yùn)動(dòng)速度每秒1個(gè)單位長(zhǎng)度,在上運(yùn)動(dòng)速度每秒2個(gè)單位長(zhǎng)度,當(dāng)在何處時(shí),運(yùn)動(dòng)的時(shí)間最短?請(qǐng)求出的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC與△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明△BOF≌△COD,則BF=CD.
解決問題
(1)將圖①中的Rt△DEF繞點(diǎn)O旋轉(zhuǎn)得到圖②,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖③,若△ABC與△DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述(1)中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;
(3)如圖④,若△ABC與△DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角∠ACB=∠EDF=α,請(qǐng)直接寫出的值(用含α的式子表示出來)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=圖象上的兩點(diǎn),過點(diǎn)A作AC⊥y軸,垂足為C,AC交OB于點(diǎn)D.若D為OB的中點(diǎn),△AOD的面積為3,則k的值為( )
A. 3 B. 6 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點(diǎn)E在AD上,且ED=2AE.
(1)求證:△ABC∽△EAB.
(2)AC與BE交于點(diǎn)H,求HC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com