【題目】等腰三角形的一條高與一腰的夾角為40°,則等腰三角形的一個(gè)底角為_____

【答案】50°65°25°

【解析】

分高為底邊上的高和腰上的高兩種情況,腰上的高再分是銳角三角形和鈍角三角形兩種情況討論求解.

解:如圖1,高為底邊上的高時(shí),∵∠BAD40°

∴頂角∠BAC2BAD2×40°80°,

底角為(180°80°÷250°

高為腰上的高時(shí),如圖2,若三角形是銳角三角形,

∵∠ABD40°,

∴頂角∠A90°40°50°

底角為(180°50°÷265°;

如圖3,若三角形是鈍角三角形,

∵∠ACD40°,

∴頂角∠BAC=∠ACD+D40°+90°130°

底角為(180°130°÷225°

綜上所述,等腰三角形的一個(gè)底角為50°65°25°

故答案為:50°65°25°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD,EFGH的邊長(zhǎng)都等于1,點(diǎn)E恰好是AC,BD的交點(diǎn),求兩個(gè)正方形的重疊部分(陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),OFBC于點(diǎn)F,交⊙O于點(diǎn)EAEBC交于點(diǎn)H,點(diǎn)DOE的延長(zhǎng)線上一點(diǎn),且∠ODB=∠AEC

(1)求證:BD是⊙O的切線;

(2)求證:CE2=EHEA

(3)若⊙O的半徑為5,sinA=,求BH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,半徑為1個(gè)單位長(zhǎng)度的半圓O1,O2O3,組成一條平滑曲線,點(diǎn)P從點(diǎn)O出發(fā),沿這條曲線向右運(yùn)動(dòng),速度為每秒 個(gè)單位長(zhǎng)度,則第2016秒時(shí),點(diǎn)P的坐標(biāo)是(  )

A.2015,0B.2015,-1C.2016,0D.2016-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在長(zhǎng)方形ABCD中,AB=4,AD=6.延長(zhǎng)BC到點(diǎn)E,使CE=2,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)t的值為_____秒時(shí),ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)閱讀下面例題,解答問(wèn)題:例題: 已知二次三項(xiàng)式x2 4x m 有一個(gè)因式是 ( x 3) ,求另一個(gè)因式以及 m 的值.

解:設(shè)另一個(gè)因式為 ( x n) ,得x2 4x m ( x 3) ( x n)

x2 4 x m x2 (n 3) x 3n

解得: n 7, m 21

另一個(gè)因式為 ( x 7) , m 的值為-21 .

問(wèn)題:仿照以上方法解答下面問(wèn)題:

1)已知二次三項(xiàng)式2x2+3x-k有一個(gè)因式是(2x-5),求另一個(gè)因式以及k的值.
2)已知二次三項(xiàng)式6x2+4ax+2有一個(gè)因式是(2x+a),a是正整數(shù),求另一個(gè)因式以及a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是我國(guó)某海域內(nèi)的一個(gè)小島,其平面圖如圖甲所示,小明據(jù)此構(gòu)造出該島的一個(gè)數(shù)學(xué)模型如圖乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,請(qǐng)據(jù)此解答如下問(wèn)題:

(1)求該島的周長(zhǎng)和面積;(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732,≈2.449)

(2)求∠ACD的余弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是平行四邊形,AD=6,若OA、OB的長(zhǎng)是關(guān)于x的一元二次方程x2﹣7x+12=0的兩個(gè)根,且OA>OB.

(1)求A、B的坐標(biāo).

(2)求證:射線AO是BAC的平分線.

(3)若點(diǎn)M在平面直角坐標(biāo)系內(nèi),則在直線AB上是否存在點(diǎn)F,使以A、C、F、M為頂點(diǎn)的四邊形為菱形?若存在,直接寫出F點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷 x 件,已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息 如下:

產(chǎn)品

每件售價(jià)/萬(wàn)元

每件成本/萬(wàn)元

年最大產(chǎn)銷量/件

6

3

200

20

10

80

甲、乙兩產(chǎn)品每年的其他費(fèi)用與產(chǎn)銷量的關(guān)系分別是: y1 kx b y2 ax2 m ,它們的函數(shù)圖象分別如圖(1)和圖(2)所示.

(1)求: y1 、 y2 的函數(shù)解析式;

(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大利潤(rùn);(利潤(rùn)=銷售額-成本-其它費(fèi)用)

(3)若通過(guò)技術(shù)改進(jìn),甲產(chǎn)品的每件成本降到 a 萬(wàn)元,乙產(chǎn)品的年最大產(chǎn)銷量可以達(dá)到 110 件,其它都不變,為獲得最大利潤(rùn),該公式應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案