【題目】某公司計(jì)劃從甲、乙兩種產(chǎn)品中選擇一種生產(chǎn)并銷售,每年產(chǎn)銷 x 件,已知產(chǎn)銷兩種產(chǎn)品的有關(guān)信息 如下:

產(chǎn)品

每件售價(jià)/萬元

每件成本/萬元

年最大產(chǎn)銷量/件

6

3

200

20

10

80

甲、乙兩產(chǎn)品每年的其他費(fèi)用與產(chǎn)銷量的關(guān)系分別是: y1 kx b y2 ax2 m ,它們的函數(shù)圖象分別如圖(1)和圖(2)所示.

(1)求: y1 、 y2 的函數(shù)解析式;

(2)分別求出產(chǎn)銷兩種產(chǎn)品的最大利潤(rùn);(利潤(rùn)=銷售額-成本-其它費(fèi)用)

(3)若通過技術(shù)改進(jìn),甲產(chǎn)品的每件成本降到 a 萬元,乙產(chǎn)品的年最大產(chǎn)銷量可以達(dá)到 110 件,其它都不變,為獲得最大利潤(rùn),該公式應(yīng)該選擇產(chǎn)銷哪種產(chǎn)品?請(qǐng)說明理由.

【答案】,(1),(2)x=200時(shí),,x=80時(shí),;(3)當(dāng)時(shí),選擇兩種產(chǎn)品一樣,當(dāng)時(shí),選擇甲產(chǎn)品當(dāng)時(shí),選擇乙產(chǎn)品理由見解析.

【解析】

(1)用待定系數(shù)法求函數(shù)解析式;(2)先列出二次函數(shù),根據(jù)二次根式的頂點(diǎn)確定函數(shù)的最值;(3)根據(jù) ,

,根據(jù)函數(shù)的最值關(guān)系,分三種情況分析.

解:(1)依題意得: ,所以 ,所以;

由已知可得: ,所以, ,所以, .

(2) , (),

2>0,,

∴x=200時(shí), .

,().

, 時(shí),

∴x=80時(shí), .

(3) ,

,,

∴x=200時(shí),,

, ,

∴x=100時(shí),,

,解得,

當(dāng)時(shí),選擇兩種產(chǎn)品一樣.

解得 ,

當(dāng)時(shí),選擇甲產(chǎn)品.

,解得

當(dāng)時(shí),選擇乙產(chǎn)品.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形的一條高與一腰的夾角為40°,則等腰三角形的一個(gè)底角為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:一個(gè)點(diǎn)將一條直線分為兩段,如果其中較長(zhǎng)的一段與整個(gè)線段的比等于較短一段與較長(zhǎng)一段的比,我們就說這個(gè)點(diǎn)是這條線段的黃金分割點(diǎn),較長(zhǎng)的一段與整個(gè)線段的比值或較短一段與較長(zhǎng)一段的比值叫做黃金分割數(shù),用一元二次方程的知識(shí)可以求出黃金分割數(shù)是我國(guó)國(guó)旗上的正五角星中就存在黃金分割點(diǎn)解決問題:

如圖,已知A、BC、D、E的五等分點(diǎn),求的度數(shù);

AC、AD分別與BE交于點(diǎn)M求證:點(diǎn)M是線段BN的一個(gè)黃金分割點(diǎn).

,則______若有根號(hào)保留根號(hào)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示為一個(gè)無蓋的正方體紙盒,現(xiàn)將其展開成平面圖,如圖(2)所示.已知展開圖中每個(gè)正方形的邊長(zhǎng)為1

(1)在展開圖(2)中可畫出最長(zhǎng)線段的長(zhǎng)度為 ,在平面展開圖(2)中這樣的最長(zhǎng)線段一共能畫出 條。

(2)試比較立體圖中∠ABC與平面展開圖中∠A′B′C′的大小關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、②分別是某種型號(hào)跑步機(jī)的實(shí)物圖與示意圖.已知踏板CD長(zhǎng)為1.6m,CD與地面DE的夾角∠CDE12°,支架AC長(zhǎng)為0.8m,ACD80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m).

(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,E,F(xiàn)分別是AB,AD的中點(diǎn),DE,BF相交于點(diǎn)G,連接BD,CG,有下列結(jié)論:①∠BGD=120° ;②BG+DG=CG;③△BDF≌△CGB;④.其中正確的結(jié)論有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求BC邊的長(zhǎng);

2)當(dāng)△ABP為直角三角形時(shí),求t的值;

3)當(dāng)△ABP為等腰三角形時(shí),求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC∠C=90°,AC=12,BC=6,一條線段PQ=ABP、Q兩點(diǎn)分別在AC和過點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),要使△ABC△QPA全等,則AP= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1) 如圖1,若BD=DC,點(diǎn)CAE的垂直平分線上。AB+BDDE有什么關(guān)系?請(qǐng)給出證明。

(2) 如圖2,若, AB+BDDE是否還存在(1)中的關(guān)系?若存在,請(qǐng)給出證明,若不存在,請(qǐng)說明理由。

(3) ,則AB+AEAD+BE有怎樣的關(guān)系?答:AB+AE AD+BE (填“>”,“<”“=”

查看答案和解析>>

同步練習(xí)冊(cè)答案