【題目】如圖,正方形ABCD,EFGH的邊長(zhǎng)都等于1,點(diǎn)E恰好是AC,BD的交點(diǎn),求兩個(gè)正方形的重疊部分(陰影部分)的面積.

【答案】

【解析】

證明EDP≌△ECQ,即可求得EDPECQ的面積相等,從而可證明重合部分的面積為正方形面積的.

據(jù)正方形的性質(zhì)可知∠EDP=∠ECQ=45°,ED=EC.

∵∠DEP+∠CEP=90°,∠CEQ+∠CEP=90°,

∴∠DEP=CEQ.

EDPECQ中,

EDP=ECQ,

ED=EC,

DEP=CEQ,

EDP≌△ECQ(ASA),

∴SEDP=SECQ

重疊部分的面積等于△DEC的面積,

正方形ABCD、EFGH的邊長(zhǎng)都等于1,

正方形ABCD、EFGH的面積等于1,

∴重合部分的面積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠準(zhǔn)備購(gòu)進(jìn)一批節(jié)能燈,已知1A型節(jié)能燈和3B型節(jié)能燈共需26元;3A型節(jié)能燈和2B型節(jié)能燈共需29元.

求一只A型節(jié)能燈和一只B型節(jié)能燈的售價(jià)各是多少元?

工廠準(zhǔn)備購(gòu)進(jìn)這兩種型號(hào)的節(jié)能燈共50只,且A型節(jié)能燈的數(shù)量不多于B型節(jié)能燈數(shù)量的4倍,當(dāng)購(gòu)進(jìn)A型節(jié)能燈m只時(shí),工廠的總費(fèi)用為w元.

寫出之間的函數(shù)關(guān)系式,并寫出自變量取值范圍;

如何購(gòu)買A、B型節(jié)能燈,可以使總費(fèi)用最少,且總費(fèi)用最少是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC 中,BAC=90°,AB=AC=2,以 AC 為一邊.在ABC 外部作等腰直角三角形ACD ,則線段 BD 的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,鐵路上A,B兩點(diǎn)相距25 km,C,D為兩村莊,DAAB于點(diǎn)A,CBAB于點(diǎn)B,已知DA15 km,CB10 km,現(xiàn)在要在鐵路AB上建一個(gè)土特產(chǎn)品收購(gòu)站E,使得CD兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課中,小輝將邊長(zhǎng)為3的兩個(gè)正方形放置在直線l上,如圖1,他連結(jié)AD、CF,經(jīng)測(cè)量發(fā)現(xiàn)AD=CF

1)他將正方形ODEFO點(diǎn)逆時(shí)針旋轉(zhuǎn)一定的角度,如圖2,試判斷ADCF還相等嗎?說(shuō)明你的理由;

2)他將正方形ODEFO點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)至直線l上,如圖3,請(qǐng)你求出CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a+10=b+12=c+15,則a2+b2+c2﹣ab﹣bc﹣ac=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明的書包里只放了A4大小的試卷共4張,其中語(yǔ)文1張、數(shù)學(xué)2張、英語(yǔ)1

若隨機(jī)地從書包中抽出2張,求抽出的試卷中有英語(yǔ)試卷的概率.

若隨機(jī)地從書包中抽出3張,抽出的試卷中有英語(yǔ)試卷的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形的一條高與一腰的夾角為40°,則等腰三角形的一個(gè)底角為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案