【題目】如圖,已知在△ABC中,D為BC的中點(diǎn),連接AD,E為AD的中點(diǎn),過點(diǎn)A作BC的平行線交BE的延長線于點(diǎn)F,連接CF.
(1)求證:四邊形ADCF為平行四邊形.
(2)當(dāng)四邊形ADCF為矩形時(shí),AB與AC應(yīng)滿足怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
【答案】(1)詳見解析;(2)四邊形ADCF為矩形時(shí)AB=AC,理由詳見解析.
【解析】
(1)利用△AEF≌△DEB得到AF=DB,所以AF=DC,根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可證明四邊形ADCF為平行四邊形;
(2)利用等腰三角形的性質(zhì)以及矩形的性質(zhì)得出即可.
(1)∵AF∥BC,
∴∠FAE=∠EDB,∠AFE=∠EBD.
又∵AE=ED,
∴△AEF≌△DEB(AAS),
∴AF=DB,
又∵BD=DC,
∴AF=DC,
∴四邊形ADCF為平行四邊形;
(2)四邊形ADCF為矩形時(shí)AB=AC;
理由:∵四邊形ADCF為矩形,
∴AD⊥BC,
∴∠ADC=90°,
∵D為BC的中點(diǎn),
∴AB=AC,
∴四邊形ADCF為矩形時(shí)AB=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段AB=30cm
(1)如圖1,點(diǎn)P沿線段AB自點(diǎn)A向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)Q沿線段點(diǎn)B向點(diǎn)A以3cm/s的速度運(yùn)動(dòng),幾秒鐘后,P、Q兩點(diǎn)相遇?
(2)如圖1,幾秒后,點(diǎn)P、Q兩點(diǎn)相距10cm?
(3)如圖2,AO=4cm,PO=2cm,當(dāng)點(diǎn)P在AB的上方,且∠POB=60°時(shí),點(diǎn)P繞著點(diǎn)O以30度/秒的速度在圓周上逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BA自B點(diǎn)向A點(diǎn)運(yùn)動(dòng),假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,下列說法正確的有()個(gè)
①快車追上慢車需6小時(shí)
②慢車比快車早出發(fā)2小時(shí)
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時(shí)到達(dá)B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三位老師周末到某家電專賣店購買冰箱和空調(diào),正值該專賣店舉行“迎新春、大優(yōu)惠”活動(dòng),具體優(yōu)惠情況如下表:
購物總金額(原價(jià)) | 折扣率 |
不超過3000元的部分 | 九折 |
超過3000元但不超過5000元的部分 | 八折 |
超過5000元的部分 | 七折 |
(1)李老師所購物品的原價(jià)是6000元,李老師實(shí)際付 元
(2)已知張老師購買了兩件物品(一個(gè)冰箱和一個(gè)空調(diào))共付費(fèi)4060元.請(qǐng)問這兩件物品的原價(jià)總共是多少元?
(3)碰巧同一天趙老師也在同一家專賣店購買了同樣的兩件物品.但趙老師上午去購買的冰箱,下 午去購買的空調(diào),如此一來趙老師兩次付款總額比張老師多花費(fèi)了140元.已知此冰箱的原價(jià)比空調(diào)的原價(jià)要貴,求這兩件物品的原價(jià)分別為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)A關(guān)于∠B的平分線的對(duì)稱點(diǎn)為E,點(diǎn)E關(guān)于∠C的平分線的對(duì)稱點(diǎn)為F.若AD=AB=2,則AF2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為直線上一點(diǎn),,是的平分線,.
(1)圖中小于平角的角的個(gè)數(shù)是 ;
(2)求的度數(shù);
(3)猜想是否平分,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的"距離",記作d(M,N) . 特別的,當(dāng)圖形M,N有公共點(diǎn)時(shí),記作d(M,N)=0.一次函數(shù)y=kx+2的圖像為L,L 與y 軸交點(diǎn)為D, △ABC中,A(0,1),B(-1,0),C(1,0).
(1)求d(點(diǎn) D , △ABC)= ;當(dāng)k=1時(shí),求d( L , △ABC)= ;
(2)若d(L, △ABC)=0.直接寫出k的取值范圍;
(3)函數(shù)y=x+b的圖像記為W , 若d(W,△ABC) 1 ,求出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(﹣8)﹣(﹣15)+(﹣9)﹣(﹣12)
(2)7+(﹣6.5)+3+(﹣1.25)+2
(3)(﹣81)÷(﹣2)×÷(﹣8)
(4)
(5)
(6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com