【題目】李大爺要圍成一個矩形菜園,菜園的一邊利用足夠長的墻,用籬笆圍成的另外三邊總長應(yīng)恰好為24米.要圍成的菜園是如圖所示的矩形ABCD.設(shè)BC邊的長為x米,AB邊的長為y米,則yx之間的函數(shù)關(guān)系式是( )

A. y=-2x+24(0<x<12) B. y=-x+12(0<x<24)

C. y=2x-24(0<x<12) D. y=x-12(0<x<24)

【答案】B

【解析】

由實際問題抽象出函數(shù)關(guān)系式關(guān)鍵是找出等量關(guān)系,本題等量關(guān)系為用籬笆圍成的另外三邊總長應(yīng)恰好為24,結(jié)合BC邊的長為x米,AB邊的長為y米,可得BC2AB=24,即x2y=24,即

y=x12。因為菜園的一邊是足夠長的墻,所以0<x<24。故選B。

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,平分于點,于點,如果,,那么的長為________,的長為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的操作過程,回答后面的問題:在一次數(shù)學(xué)實踐探究活動中,小強過A,C兩點畫直線AC把平行四邊形ABCD分割成兩個部分(如圖1),小剛過AB,CD的中點畫直線EF,把平行四邊形ABCD也分割成兩個部分(如圖2).

(1)這兩種分割方法中面積之間的關(guān)系為:S1  S2,S3  S4;

(2)根據(jù)這兩位同學(xué)的分割方法,你認為把平行四邊形分割成滿足以上面積關(guān)系的直線有  條,請在圖3的平行四邊形中畫出一種;

(3)由上述實驗操作過程,你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,DE分別是AB,AC上的點,且AD=CE.

(1)求證:BE=CD;
(2)求∠1+∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:長江路西段與黃河路的夾角為150°,長江路東段與淮河路的夾角為135°,黃河路全長AC=20km,從A地道B地必須先走黃河路經(jīng)C點后再走淮河路才能到達,城市道路改造后,直接打通長江路(即修建AB路段).問:打通長江路后從A地道B地可少走多少路程?(參考數(shù)據(jù): ≈1.4, ≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=2,AC=4,將△ABC繞點C按逆時針方向旋轉(zhuǎn)得到△A′B′C,使CB′∥AB,分別延長AB、CA′相交于點D,則線段BD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點A(1,4).

(1)求這個一次函數(shù)的解析式;

(2)試判斷點B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“六一”前夕,某玩具經(jīng)銷商用去2350元購進A,B,C三種新型的電動玩具共50套,并且購進的三種玩具都不少于10套,設(shè)購進A種玩具x套,B種玩具y套,三種電動玩具的進價和售價如表所示

型 號

A

B

C

進價(元/套)

40

55

50

售價(元/套)

50

80

65


(1)用含x、y的代數(shù)式表示購進C種玩具的套數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)假設(shè)所購進的這三種玩具能全部賣出,且在購銷這種玩具的過程中需要另外支出各種費用200元.
①求出利潤P(元)與x(套)之間的函數(shù)關(guān)系式;②求出利潤的最大值,并寫出此時三種玩具各多少套.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰Rt△ABC的直角邊為1,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊.畫第三個Rt△ADE,…,依此類推直到第五個等腰Rt△AFG,則由這五個等腰直角三角形所構(gòu)成的圖形的面積為

查看答案和解析>>

同步練習冊答案