【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)畫出△ABC關(guān)于原點(diǎn)成中心對(duì)稱的三角形△A′B′C′;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出圖形,直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)B″的坐標(biāo);
(3)請(qǐng)直接寫出:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
【答案】(1)圖略;(2)圖略,點(diǎn)B″的坐標(biāo)為(0,﹣6);(3)點(diǎn)D坐標(biāo)為(﹣7,3)或(3,3)或(﹣5,﹣3).
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C關(guān)于原點(diǎn)對(duì)稱的點(diǎn)A′、B′、C′的位置,然后順次連接即可;
(2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的對(duì)應(yīng)點(diǎn)的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)分AB、BC、AC是平行四邊形的對(duì)角線三種情況解答.
解:(1)如圖所示△A′B′C′即為所求;
(2)如圖所示,△即為所求;
(3)D(-7,3)或(-5,-3)或(3,3).
當(dāng)以BC為對(duì)角線時(shí),點(diǎn)D3的坐標(biāo)為(-5,-3);
當(dāng)以AB為對(duì)角線時(shí),點(diǎn)D2的坐標(biāo)為(-7,3);
當(dāng)以AC為對(duì)角線時(shí),點(diǎn)D1坐標(biāo)為(3,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+3交x軸于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)連接BC,若點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),過點(diǎn)P作直線PN⊥x軸于點(diǎn)N,交拋物線于點(diǎn)M,當(dāng)△BCM面積最大時(shí),求△BPN的周長(zhǎng).
(3)在(2)的條件下,當(dāng)△BCM面積最大時(shí),在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△CNQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC為⊙O內(nèi)接等邊三角形,將△ABC繞圓心O旋轉(zhuǎn)30°到△DEF處,連接AD、AE,則∠EAD的度數(shù)為( )
A.150°B.135°C.120°D.105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙M經(jīng)過O點(diǎn),并且與x軸、y軸分別交于A、B兩點(diǎn),線段OA、OB(OA>OB)的長(zhǎng)是方程的兩根.
(1)求線段OA、OB的長(zhǎng);
(2)若點(diǎn)C在劣弧OA上,連結(jié)BC交OA于D,當(dāng)OC2=CD·CB時(shí),求點(diǎn)C的坐標(biāo);
(3)若點(diǎn)C在優(yōu)弧OA上,作直線BC交x軸于D,是否存在△COB和△CDO相似,若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】創(chuàng)客聯(lián)盟的隊(duì)員想用3D打印完成一幅邊長(zhǎng)為6米的正方形作品ABCD,設(shè)計(jì)圖案如圖所示(四周陰影是四個(gè)全等的矩形,用材料甲打;中心區(qū)是正方形MNPQ,用材料乙打。诖蛴『穸缺3窒嗤那闆r下,兩種材料的消耗成本如下表:
材料 | 甲 | 乙 |
價(jià)格(元/米2) | 80 | 50 |
設(shè)矩形的較短邊AH的長(zhǎng)為x米,打印材料的總費(fèi)用為y元.
(1)MQ的長(zhǎng)為 米(用含x的代數(shù)式表示);
(2)求y關(guān)于x的函數(shù)解析式;
(3)當(dāng)中心區(qū)的邊長(zhǎng)不小于2米時(shí),預(yù)備材料的購(gòu)買資金2800元夠用嗎?請(qǐng)利用函數(shù)的增減性來(lái)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)以直線BC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的底面圓周長(zhǎng).
(2)以直線AC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的側(cè)面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如右圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E是BC邊上一點(diǎn),以AB為直徑在正方形內(nèi)作半圓
O,將△DCE沿DE翻折,點(diǎn)C剛好落在半圓O的點(diǎn)F處,則CE的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,∠ABC=90°,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,直線DE與直線AC交于點(diǎn)F,連接FB.
(1)如圖1,當(dāng)∠BAC<45°時(shí),
①求證:DF⊥AC;
②求∠DFB的度數(shù);
(2)如圖2,當(dāng)∠BAC>45°時(shí),
①請(qǐng)依題意補(bǔ)全圖2;
②用等式表示線段FC,FB,FE之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=,對(duì)角線AC,BD交于O點(diǎn),將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),分別交BC,AD于點(diǎn)E,F.
(1)求證:當(dāng)旋轉(zhuǎn)角為90°時(shí),四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請(qǐng)說(shuō)明理由;如能,說(shuō)明理由并求出此時(shí)AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com