【題目】如圖,在平面直角坐標系中,已知⊙A經過點E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )
A.
B.
C.
D.
【答案】B
【解析】解:連接EC,
∵∠COE=90°,
∴EC是⊙A的直徑,
∵C(0,6),E(﹣8,0),O(0,0),
∴OC=6,OE=8,
由勾股定理得:EC=10,
∵∠OBC=∠OEC,
∴cos∠OBC=cos∠OEC= = = .
所以答案是:B.
【考點精析】利用圓周角定理和解直角三角形對題目進行判斷即可得到答案,需要熟知頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半;解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】某商貿公司有、兩種型號的商品需運出,這兩種商品的體積和質量分別如下表所示:
體積(立方米/件) | 質量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號,體積一共是20立方米,質量一共是10.5噸,求、兩種型號商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6立方米,其收費方式有以下兩種:
①按車收費:每輛車運輸貨物到目的地收費600元;
②按噸收費:每噸貨物運輸?shù)侥康牡厥召M200元.
現(xiàn)要將(1)中商品一次或分批運輸?shù)侥康牡,如果兩種收費方式可混合使用,商貿公司應如何選擇運送、付費方式,使其所花運費最少,最少運費是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形 ACDE 是證明勾股定理時用到的一個圖形,a 、b 、c 是 RtABC和 RtBED 的邊長,已知,這時我們把關于 x 的形如二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)寫出一個“勾系一元二次方程”;
(2)求證:關于 x 的“勾系一元二次方程”,必有實數(shù)根;
(3)若 x 1是“勾系一元二次方程” 的一個根,且四邊形 ACDE 的周長是6,求ABC 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4的等邊三角形AOB的頂點O在坐標原點,點A在x軸的正半軸上,點B在第一象限.點P從點O出發(fā),沿x軸以每秒1個單位長的速度向點A勻速運動,當點P到達點A時停止運動,設點P運動的時間是t秒.將線段BP的中點繞點P按順時針方向旋轉60°得點C,點C隨點P的運動而運動,連接CP、CA.過點P作PD⊥OB于D點
(1)直接寫出BD的長并求出點C的坐標(用含t的代數(shù)式表示)
(2)在點P從O向A運動的過程中,△PCA能否成為直角三角形?若能,求t的值.若不能,請說明理由;
(3)點P從點O運動到點A時,點C運動路線的長是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知射線CB∥OA,∠C=∠OAB,
(1)求證:AB∥OC;
(2)如圖2,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
①當∠C=110°時,求∠EOB的度數(shù).
②若平行移動AB,那么∠OBC :∠OFC的值是否隨之發(fā)生變化?若變化,找出變
化規(guī)律;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A(2,m)是第一象限內一點,連接OA,將OA繞點A逆時針旋轉90°得到線段AB,若反比例函數(shù)y= (x>0)的圖象恰好同時經過點A、B,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2018個等腰直角三角形的斜邊長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x+3與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,連接BC.
(1)求A、B、C三點的坐標及拋物線的對稱軸;
(2)若已知x軸上一點N( ,0),則在拋物線的對稱軸上是否存在一點Q,使得△CNQ是直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績/環(huán) | 中位數(shù)/環(huán) | 眾數(shù)/環(huán) | 方差 | |
甲 | 7 | 7 | 1.2 | |
乙 | 7 | 8 | 4.2 |
(1)寫出表格中,的值;
(2)從方差的角度看,若選派其中一名參賽,你認為應選哪名隊員?并說明理.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com