【題目】如圖,已知△ABC是腰長為1的等腰直角三形,以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,再以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,…,依此類推,則第2018個等腰直角三角形的斜邊長是______.
【答案】()2018
【解析】
首先根據(jù)△ABC是腰長為1的等腰直角三形,求出△ABC的斜邊長是,然后根據(jù)以Rt△ABC的斜邊AC為直角邊,畫第二個等腰Rt△ACD,求出第2個等腰直角三角形的斜邊長是多少;再根據(jù)以Rt△ACD的斜邊AD為直角邊,畫第三個等腰Rt△ADE,求出第3個等腰直角三角形的斜邊長是多少,推出第2017個等腰直角三角形的斜邊長是多少即可.
解:∵△ABC是腰長為1的等腰直角三形,
∴△ABC的斜邊長是,
第2個等腰直角三角形的斜邊長是:×=()2,
第3個等腰直角三角形的斜邊長是:()2×=()3,
…,
∴第2012個等腰直角三角形的斜邊長是()2018.
故答案為:()2018.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)中x與y的部分對應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
①ac<0;
②當(dāng)x>1時,y的值隨x值的增大而減。
③x=3是方程ax2+(b﹣1)x+c=0的一個根;
④當(dāng)﹣1<x<3時,ax2+(b﹣1)x+c>0.
上述結(jié)論中正確的個數(shù)是( )
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知⊙A經(jīng)過點(diǎn)E,B,C,O,且C(0,6)、E(﹣8,0)、O(0,0),則cos∠OBC的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
①;②;③;…
根據(jù)上述式子的規(guī)律,解答下列問題:
(1)第④個等式為 ;
(2)寫出第個等式,并驗證其正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:有一組對角相等而另一組對角不相等的凸四邊形叫做“湘一四邊形”.
(1)已知:如圖1,四邊形是“湘一四邊形”,,,.則 , ,若,,則 (直接寫答案)
(2)已知:在“湘一四邊形”中,,,,.求對角線的長(請畫圖求解),
(3)如圖(2)所示,在四邊形中,若,當(dāng)時,此時四邊形是否是“湘一四邊形”,若是,請說明理由:若不是,請進(jìn)一步判斷它的形狀,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點(diǎn)為“格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做“格點(diǎn)三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過怎樣的變換得到的?
(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-3,4),請求出三角形DEF的面積S.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題:計算和分解因式
(1)計算: ﹣|﹣4|+2cos60°﹣(﹣ )﹣1
(2)因式分解:(x﹣y)(x﹣4y)+xy.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于,兩點(diǎn),且經(jīng)過點(diǎn).
(1)求的值;
(2)若,
①求的值;
②點(diǎn)為軸上一動點(diǎn),點(diǎn)為坐標(biāo)平面內(nèi)另一點(diǎn),若以,,,為頂點(diǎn)的四邊形是菱形,請直接寫出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com