【題目】如圖,ABC中,BAC=90°,AB=AC,ADBC,垂足是D,AE平分BAD,交BC于點E.在ABC外有一點F,使FAAE,F(xiàn)CBC.

(1)求證:BE=CF;

(2)在AB上取一點M,使BM=2DE,連接MC,交AD于點N,連接ME.求證:MEBC;DE=DN.

【答案】(1)證明見解析;(2)證明見解析;證明見解析.

【解析】

試題(1)通過角的轉(zhuǎn)換和等腰直角三角形的性質(zhì),得到BAE=CAF和B=FCA,從而ASA證明ABF≌△ACF,根據(jù)全等三角形對應(yīng)邊相等得到結(jié)論.

(2)過E點作EGAB于點G,通過證明EG是BM的垂直平分線就易得出結(jié)論.

通過證明RtAMCRtEMC和ADE≌△CDN來證明結(jié)論.

試題解析:(1)如圖,∵∠BAC=90°,F(xiàn)AAE,∴∠1+EAC=90°,2+EAC=90°.

∴∠1=2.

AB=AC,∴∠B=ACB=45°.

FCBC,∴∠FCA=90°-ACB=45°.∴∠B=FCA.

∴△ABF≌△ACF(ASA).BE=CF.

(2)如圖,過E點作EGAB于點G,

∵∠B=45°,∴△CBE是等腰直角三角形.BG=EG,3=45°.

BM=2DE,BM=2BG,即點G是BM的中點.EG是BM的垂直平分線.∴∠4=3=45°.

∴∠MEB=4+3=90°.MEBC.

②∵ADBC,MEAD.∴∠5=6.

∵∠1=5,∴∠1=6.AM=EM.

MC=MC,RtAMCRtEMC(HL).∴∠7=8.

∵∠BAC=90°,,AB=AC,∴∠ACB=45°,BAD=CAD=45°.

∴∠5=7=22.5°,AD=CD.

∵∠ADE=CDN=90°,∴△ADE≌△CDN(ASA).DE=DN.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點 A 逆時針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點 PH,連結(jié) AH,若 P CH 的中點,則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:

甲公司為基本工資+攬件提成,其中基本工資為70/日,每攬收一件提成2元;

乙公司無基本工資,僅以攬件提成計算工資.若當(dāng)日攬件數(shù)不超過40,每件提成4元;若當(dāng)日攪件數(shù)超過40,超過部分每件多提成2元.

如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計圖:

(1)現(xiàn)從今年四月份的30天中隨機抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過40(不含40)的概率;

(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的

攬件數(shù),解決以下問題:

①估計甲公司各攬件員的日平均件數(shù);

②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請利用所學(xué)的統(tǒng)計知識幫他選擇,井說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期30天的試銷售,售價為8/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成如圖所示的圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關(guān)系,已知線段DE表示的函數(shù)關(guān)系中,時間每增加1天,日銷售量減少5件.

(1)第24天的日銷售量是   件,日銷售利潤是   元.

(2)求線段DE所對應(yīng)的函數(shù)關(guān)系式.(不要求寫出自變量的取值范圍)

(3)通過計算說明試銷售期間第幾天的日銷售量最大?最大日銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊得到△AFE,且點F在長方形ABCD內(nèi).將AF延長交邊BC于點G.若BG=3CG,則 =(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點,四邊形OABC是長方形,點AC、D的坐標(biāo)分別為A9,0)、C0,4),D50),點P從點O出發(fā),以每秒1個單位長度的速度沿OCBA運動,點P的運動時間為t.

1)當(dāng)t=5時, OP長為____________;

2)當(dāng)點PBC邊上時,OP+PD有最小值嗎?如果有,請算出該最小值,如果沒有,請說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進甲、乙兩種商品,甲種商品共用了元,乙種商品共用了元.已知乙種商品每件進價比甲種商品每件進價多元,且購進的甲、乙兩種商品件數(shù)相同.

求甲、乙兩種商品的每件進價;

該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為元,乙種商品的銷售單價為元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數(shù)量后,將剩余的甲種商品按原銷售單價的九折銷售;乙種商品銷售單價保持不變.要使兩種商品全部售完后共獲利不少于元,問甲種商品按原銷售單價至少銷售多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABC=∠ACB,把這個三角形折疊,使得點B與點A重合,折痕分別交直線AB,AC于點M,N,若∠ANM50°,則∠B的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC底邊BC的長為4,面積為12,腰AB的垂直平分線EFAB于點E,交AC于點F.DBC邊的中點,M為線段EF上一個動點,則BDM的周長的最小值為______

查看答案和解析>>

同步練習(xí)冊答案