【題目】如圖,在△ABC中,BC=6,E,F分別是AB,AC的中點(diǎn),動(dòng)點(diǎn)P在射線EF上,BP交CE于點(diǎn)D,∠CBP的平分線交CE于點(diǎn)Q,當(dāng)CQ=CE時(shí),EP+BP的值為( 。
A.6B.9C.12D.18
【答案】C
【解析】
根據(jù)平行線和角平分線的性質(zhì)得到相等的角,然后利用等角對(duì)等邊,得出BP=PM,從而用其它的線段長(zhǎng)表示出EP+BP,再根據(jù)線段CQ和CE的關(guān)系,得出EQ和CQ的關(guān)系,再綜合根據(jù)平行線得出三角形相似得出EM和BC的關(guān)系,從而解決EP+BP的值.
如圖,延長(zhǎng)BQ交射線EF于M,
∵E、F分別是AB、AC的中點(diǎn),
∴EF∥BC,
∴∠M=∠CBM,
∵BQ是∠CBP的平分線,
∴∠PBM=∠CBM,
∴∠M=∠PBM,
∴BP=PM,
∴EP+BP=EP+PM=EM,
∵CQ=CE,
∴EQ=2CQ,
由EF∥BC得,△MEQ∽△BCQ,
∴
=2,
∴EM=2BC=2×6=12,
即EP+BP=12.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)閉合時(shí)的夾子,圖2是該夾子的主視示意圖,夾子兩邊為AC,BD(點(diǎn)A與點(diǎn)B重合),點(diǎn)O是夾子轉(zhuǎn)軸位置,OE⊥AC于點(diǎn)E,OF⊥BD于點(diǎn)F,OE=OF=1cm,AC=BD=6cm, CE=DF, CE:AE=2:3.按圖示方式用手指按夾子,夾子兩邊繞點(diǎn)O轉(zhuǎn)動(dòng).
(1)當(dāng)E,F兩點(diǎn)的距離最大值時(shí),以點(diǎn)A,B,C,D為頂點(diǎn)的四邊形的周長(zhǎng)是_____ cm.
(2)當(dāng)夾子的開(kāi)口最大(點(diǎn)C與點(diǎn)D重合)時(shí),A,B兩點(diǎn)的距離為_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】抗擊“新冠疫情”期間,某種消毒液A市需要6噸,B市需要8噸,正好M市儲(chǔ)備有10噸,N市儲(chǔ)備有4噸,預(yù)防“新冠疫情”領(lǐng)導(dǎo)小組決定將這14噸消毒液調(diào)往A市和B市,消毒液每噸的運(yùn)費(fèi)價(jià)格如下表。設(shè)從M市調(diào)運(yùn)x噸到A市.
(1)求調(diào)運(yùn)14噸消毒液的總運(yùn)費(fèi)y關(guān)于x的函數(shù)關(guān)系式;
(2)求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案,最低運(yùn)費(fèi)的多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一座橫跨沙穎河的斜拉橋,拉索兩端分別固定在主梁l和索塔h上,索塔h垂直于主梁l,垂足為D.拉索AE,BF,CG的仰角分別是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的長(zhǎng).(精確到1m,參考數(shù)據(jù):≈2.24,≈1.41)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小組為了解本校七年級(jí)女生的身高情況,統(tǒng)計(jì)了甲、乙兩個(gè)班女生的身高,并繪制了以下不完整的統(tǒng)計(jì)圖.(身高單位:)
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)兩個(gè)班共有女生 人;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)求扇形統(tǒng)計(jì)圖中部分所對(duì)應(yīng)的扇形圓心角度數(shù);
(4)該校七年級(jí)共有女生人,請(qǐng)估計(jì)身高在范圍的女生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是邊長(zhǎng)為2的等邊三角形,點(diǎn)與點(diǎn)分別位于直線的兩側(cè),且,連接,交直線于點(diǎn).
(1)當(dāng)時(shí),求線段的長(zhǎng);
(2)過(guò)點(diǎn)作,垂足為點(diǎn),直線交于點(diǎn),
①當(dāng)時(shí),設(shè)(其中表示的面積,表示的面積),求關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;
②當(dāng)時(shí),請(qǐng)直接寫出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線與x軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為G.
①當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點(diǎn)的個(gè)數(shù);
②若區(qū)域G內(nèi)恰有2個(gè)整點(diǎn),直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,BC的延長(zhǎng)線與⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線L1:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0),OB=OC=3OA.若拋物線L2與拋物線L1關(guān)于直線x=2對(duì)稱.
(1)求拋物線L1與拋物線L2的解析式;
(2)在拋物線L1上是否存在一點(diǎn)P,在拋物線L2上是否存在一點(diǎn)Q,使得以BC為邊,且以B、C、P、Q為頂點(diǎn)的四邊形為平行四邊形?若存在,求出P、Q兩點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com