【題目】如圖、在平行四邊形ABCD中,E、F是對角線BD上的兩點,則下列條件中不能判定四邊形AECF是平行四邊形的是( )
A.BD=DFB.AFBD,
C.D.
【答案】D
【解析】
連接AC與BD相交于O,根據(jù)平行四邊形的對角線互相平分可得OA=OC,OB=OD,再根據(jù)對角線互相平分的四邊形是平行四邊形,只要證明得到OE=OF即可,然后根據(jù)各選項的條件分析判斷即可得解.
如圖,連接AC與BD相交于O,
在ABCD中,OA=OC,OB=OD,
要使四邊形AECF為平行四邊形,只需證明得到OE=OF即可;
A、若BE=DF,則OB-BE=OD-DF,即OE=OF,故本選項錯誤;
B、若AF⊥BD,CE⊥BD,則可以利用“角角邊”證明△ADF和△CBE全等,從而得到DF=BE,然后同A,故本選項錯誤;
C、∠BAE=∠DCF能夠利用“角角邊”證明△ABE和△CDF全等,從而得到DF=BE,然后同A,故本選項錯誤;
D、AF=CE無法證明得到OE=OF,故本選項正確.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知菱形ABCD的周長是48cm, AE⊥BC,垂足為E,AF⊥CD,垂足為F,∠EAF=2∠C.
(1)求∠C的度數(shù);
(2)已知DF的長是關于x的方程x2-5x-a=0的一個根,求該方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為32.3°,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為55.7°,女生樓在男生樓墻面上的影高為DA.已知CD=42m.求樓間距AB的長度為多少米?(參考數(shù)據(jù):sin32.3°=0.53,cos32.3°=0.85,tan32.3°=0.63,sin55.7°=0.83,cos55.7°=0.56,tan55.7°=1.47)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=24,AC=18,D是AC上一點,AD=6,在AB上取一點E,使A、D、E三點組成的三角形與△ABC相似,則AE的長為( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別是邊AB,CD上的點,AE=CF,連結(jié)EFBF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.
(1)求證:OE=OF;(2)若BC=3,求AB的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3)
(1)將△ABC向右平移6個單位至△A1B1C1,再將△A1B1C1繞點E(5,1)逆時針旋轉(zhuǎn)90°至△A2B2C2,請按要求畫出圖形;
(2)在(1)的變換過程中,直接寫出點C的運動路徑長
(3)△A2B2C2可看成△ABC繞某點P旋轉(zhuǎn)90°得到的,則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司推銷一種產(chǎn)品,公司付給推銷員的月報酬有兩種方案如圖所示:方案一所示圖形是頂點在原點的拋物線的一部分,方案二所示圖形是射線.其中(件)表示推銷員推銷產(chǎn)品的數(shù)量,(元)表示付給推銷員的月報酬.
(1)分別求兩種方案中關于的函數(shù)關系式;
(2)當推銷員推銷產(chǎn)品的數(shù)量達到多少件時,兩種方案月報酬差額將達到元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為原點,拋物線經(jīng)過點,對稱軸為直線,點關于直線的對稱點為點.過點作直線軸,交軸于點.
(Ⅰ)求該拋物線的解析式及對稱軸;
(Ⅱ)點在軸上,當的值最小時,求點的坐標;
(Ⅲ)拋物線上是否存在點,使得,若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com