【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關于x軸的對稱點,P是拋物線上的一點,當△PBH與△AOC相似時,求符合條件的P點的坐標(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當CN的值最大時,求點E的坐標.
【答案】(1)y=x2﹣x﹣2;(2)P的坐標為(﹣1,0)或(8,18);(3)E的坐標為(﹣,0).
【解析】
試題分析:(1)由拋物線與x軸交于A(﹣1,0),B(4,0),可設拋物線的解析式為y=a(x+1)(x﹣4),然后將(0,﹣2)代入解析式即可求出a的值;(2)當△PBH與△AOC相似時,△PBH是直角三角形,由可知∠AHB=90°,根據(jù)待定系數(shù)法求出直線AH的解析式后,聯(lián)立一次函數(shù)與二次函數(shù)的解析式后即可求出P的坐標;(3)設M的坐標為(m,0),由∠BME=∠BDC可知∠EMC=∠MBD,所以△NCM∽△MDB,利用對應邊的比相等即可得出CN與m的函數(shù)關系式,利用二次函數(shù)的性質即可求出m=時,CN有最大值,然后再證明△EMB∽△BDM,即可求出E的坐標.
試題解析:(1)∵拋物線與x軸交于A(﹣1,0),B(4,0),
∴設拋物線的解析式為:y=a(x+1)(x﹣4),
把(0,﹣2)代入y=a(x+1)(x﹣4),
∴a=,
∴拋物線的解析式為:y=x2﹣x﹣2;
(2)當△PBH與△AOC相似時,
∴△AOC是直角三角形,
∴△PBH也是直角三角形,
由題意知:H(0,2),
∴OH=2,
∵A(﹣1,0),B(4,0),
∴OA=1,OB=4,
∴
∵∠AOH=∠BOH,
∴△AOH∽△BOH,
∴∠AHO=∠HBO,
∴∠AHO+∠BHO=∠HBO+∠BHO=90°,
∴∠AHB=90°,
設直線AH的解析式為:y=kx+b,
把A(﹣1,0)和H(0,2)代入y=kx+b,
∴,
∴解得k=2,b=2,
∴直線AH的解析式為:y=2x+2,
聯(lián)立,
解得:x=1或x=﹣8,
當x=﹣1時,
y=0,
當x=8時,
y=18
∴P的坐標為(﹣1,0)或(8,18)
(3)過點M作MF⊥x軸于點F,
設點E的坐標為(n,0),M的坐標為(m,0),
∵∠BME=∠BDC,
∴∠EMC+∠BME=∠BDC+∠MBD,
∴∠EMC=∠MBD,
∵CD∥x軸,
∴D的縱坐標為﹣2,
令y=﹣2代入y=x2﹣x﹣2,
∴x=0或x=3,
∴D(3,﹣2),
∵B(4,0),
∴由勾股定理可求得:BD=,
∵M(m,0),
∴MD=3﹣m,CM=m(0≤m≤3)
∴由拋物線的對稱性可知:∠NCM=∠BDC,
∴△NCM∽△MDB,
∴,
∴,
∴CN=,
∴當m=時,CN可取得最大值,
∴此時M的坐標為(,﹣2),
∴MF=2,BF=,MD=
∴由勾股定理可求得:MB=,
∵E(n,0),
∴EB=4﹣n,
∵CD∥x軸,
∴∠NMC=∠BEM,∠EBM=∠BMD,
∴△EMB∽△BDM,
∴,
∴MB2=MDEB,
∴=×(4﹣n),
∴n=﹣,
∴E的坐標為(﹣,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標為(0,﹣1),該拋物線與BE交于另一點F,連接BC.
(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設運動時間為t秒(t>0),在點M的運動過程中,當t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中描出下列各組點,并將各組的點用線段依次連接起來.
(1)(1,0),(6,0),(6,1),(5,0),(6,-1),(6,0);
(2)(2,0),(5,3),(4,0);
(3)(2,0),(5,-3),(4,0).
觀察所得到的圖形像什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點,BC∥x軸,交y軸于點C,動點P從坐標原點O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運動,終點為C,過P作PM⊥x軸,垂足為M.設三角形OMP的面積為S,P點運動時間為t,則S關于x的函數(shù)圖象大致為( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點,其中﹣3≤x1<x2≤0,則下列結論正確的是( )
A.y1<y2 B.y1>y2
C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點P在x軸上,且點P到y軸的距離為1,則點P的坐標為( )
A. (0,1) B. (1,0)
C. (0,1)或(0,-1) D. (1,0)或(-1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中必然發(fā)生的事件是 ( )
A.一個圖形旋轉后所得的圖形與原來的圖形不全等
B.100件產(chǎn)品中有4件次品,從中任意抽取5件,至少一件是正品
C.不等式的兩邊同時乘以一個數(shù),結果仍是不等式
D.隨意翻一本書的某頁,這頁的頁碼一定是偶數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格圖中完成下列各題:(用直尺畫圖,保留痕跡)
(1)畫出格點△ABC(頂點均在格點上)關于直線DE對稱的△A1B1C1;
(2)在DE上畫出點Q,使QA+QC最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com