【題目】在直角坐標(biāo)系中描出下列各組點,并將各組的點用線段依次連接起來.
(1)(1,0),(6,0),(6,1),(5,0),(6,-1),(6,0);
(2)(2,0),(5,3),(4,0);
(3)(2,0),(5,-3),(4,0).
觀察所得到的圖形像什么?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( 。
A.x3﹣x=x(x2﹣1)B.x2+y2=(x+y)(x﹣y)
C.(a+4)(a﹣4)=a2﹣16D.m2+4m+4=(m+2)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線y=x2﹣3x+m與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標(biāo)為( 、 ),BK的長是 ,CK的長是 ;
②求點F的坐標(biāo);
③請直接寫出拋物線的函數(shù)表達(dá)式;
(2)將矩形OCDE沿著經(jīng)過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便作答.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2+2x+3=0的根的情況是( )
A.有兩個不相等的實數(shù)根
B.有兩個相等的實數(shù)根
C.無實數(shù)根
D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,∠MAN=90°,射線AE在這個角的內(nèi)部,點B、C分別在∠MAN的邊AM、AN上,且AB=AC,CF⊥AE于點F,BD⊥AE于點D.求證:△ABD≌△CAF;
(2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,且∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)如圖3,在△ABC中,AB=AC,AB>BC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為15,求△ACF與△BDE的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A(﹣1,0),B(4,0),與y軸交于C(0,﹣2).
(1)求拋物線的解析式;
(2)H是C關(guān)于x軸的對稱點,P是拋物線上的一點,當(dāng)△PBH與△AOC相似時,求符合條件的P點的坐標(biāo)(求出兩點即可);
(3)過點C作CD∥AB,CD交拋物線于點D,點M是線段CD上的一動點,作直線MN與線段AC交于點N,與x軸交于點E,且∠BME=∠BDC,當(dāng)CN的值最大時,求點E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】伸縮門的連接裝置被設(shè)計成平行四邊形,這是利用了平行四邊形的哪種性質(zhì)?( )
A.對角線互相平分B.不穩(wěn)定性C.對角相等D.中心對稱性
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com