【題目】如圖,已知 AD 為△ABC 的高線,AD=BC,以 AB 為底邊作等腰 Rt△ABE,連接 ED, EC,延長CE 交AD 于F 點,下列結論:①△ADE≌△BCE;②CE⊥DE;③BD=AF;④S△BDE=S△ACE,其中正確的有( )
A. ①③B. ①②④C. ①②③④D. ②③④
【答案】C
【解析】
①易證∠CBE=∠DAE,即可求證:△ADE≌△BCE;②根據(jù)①結論可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解題;③證明△AEF≌△BED即可;④易證△FDC是等腰直角三角形,則CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE=S△ACE,所以S△BDE=S△ACE.
∵AD為△ABC的高線,
∴∠CBE+∠ABE+∠BAD=90°,
∵Rt△ABE是等腰直角三角形,
∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,
∴∠CBE+∠BAD=45°,
∴∠DAE=∠CBE,
在△DAE和△CBE中,
∴△ADE≌△BCE(SAS);
故①正確;
②∵△ADE≌△BCE,
∴∠EDA=∠ECB,
∵∠ADE+∠EDC=90°,
∴∠EDC+∠ECB=90°,
∴∠DEC=90°,
∴CE⊥DE;
故②正確;
③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,
∴∠BDE=∠AFE,
∵∠BED+∠BEF=∠AEF+∠BEF=90°,
∴∠BED=∠AEF,
在△AEF和△BED中,
∴△AEF≌△BED(AAS),
∴BD=AF;
故③正確;
④∵AD=BC,BD=AF,
∴CD=DF,
∵AD⊥BC,
∴△FDC是等腰直角三角形,
∵DE⊥CE,
∴EF=CE,
∴S△AEF=S△ACE,
∵△AEF≌△BED,
∴S△AEF=S△BED,
∴S△BDE=S△ACE.
故④正確;
綜上①②③④都正確,故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:如果一個數(shù)的平方等于,記為記,這個數(shù)叫做虛數(shù)單位,那么形如(為實數(shù))的數(shù)就叫做復數(shù),叫這個復數(shù)的實部,叫做這個復數(shù)的虛部。它有如下特點:①它的加,減,乘法運算與整式的加,減,乘法運算類似。例如計算:;②若他們的實部和虛部分別相等,則稱這兩個復數(shù)相等;若它們的實部相等,虛部互為相反數(shù),則稱這兩個復數(shù)共軛,如的共軛復數(shù)為。
(1)填空: ; 。
(2)求的共軛復數(shù):
(3)已知,其中為正整數(shù),求的值;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在數(shù)軸上點表示數(shù),點表示數(shù)6,
(1)A、B兩點之間的距離等于_________;
(2)在數(shù)軸上有一個動點,它表示的數(shù)是,則的最小值是_________;
(3)若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)是_________;
(4)若在原點的左邊2個單位處放一擋板,一小球甲從點處以5個單位/秒的速度向右運動;同時另一小球乙從點處以2個單位/秒的速度向左運動,在碰到擋板后(忽略球的大小,可看作一點)兩球分別以原來的速度向相反的方向運動,設運動時間為秒,請用來表示甲、乙兩小球之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016湖北省咸寧市)如圖,邊長為4的正方形ABCD內接于點O,點E是上的一動點(不與A、B重合),點F是上的一點,連接OE、OF,分別與AB、BC交于點G,H,且∠EOF=90°,有以下結論:
①;
②△OGH是等腰三角形;
③四邊形OGBH的面積隨著點E位置的變化而變化;
④△GBH周長的最小值為.
其中正確的是________(把你認為正確結論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一只小蟲子落在數(shù)軸上的某點,第一次從向左跳一個單位到,第二次從向右跳個單位到,第三次從向左跳個單位到,第四次從向右跳個單位到,按以上規(guī)律跳了次時,它落在數(shù)軸上的點所表示的數(shù)恰好是2019,則這只小蟲的初始位置所在的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點.
(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可);
(3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn).
求證:①E、F是線段BD的勾股分割點;
②△AMN的面積是△AEF面積的兩倍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A、B在數(shù)軸上分別表示a、b.
(1)對照數(shù)軸填寫下表:
A、B兩點的距離 |
(2)若A、B兩點間的距離記為d,問:d和a、b有何數(shù)量關系?
(3)在數(shù)軸上標出所有符合條件的整數(shù)點,使它到5和-5的距離之和為10,并求所有這些整數(shù)的和;
(4)若點C表示的數(shù)為x,當點C在什么位置時,取得的值最小?最小值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),abc≠0)與直線l都經(jīng)過y軸上的同一點,且拋物線L的頂點在直線l上,則稱次拋物線L與直線l具有“一帶一路”關系,并且將直線l叫做拋物線L的“路線”,拋物線L叫做直線l的“帶線”.
(1)若“路線”l的表達式為y=2x﹣4,它的“帶線”L的頂點的橫坐標為﹣1,求“帶線”L的表達式;
(2)如果拋物線y=mx2﹣2mx+m﹣1與直線y=nx+1具有“一帶一路”關系,求m,n的值;
(3)設(2)中的“帶線”L與它的“路線”l在y軸上的交點為A.已知點P為“帶線”L上的點,當以點P為圓心的圓與“路線”l相切于點A時,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點A、B在直線上,點C、D在直線上,AE平分∠BAC,CE平分∠ACD,
∠EAC+∠ACE=90° .
(1)請判斷與的位置關系并說明理由;
(2)如圖2,在(1)的結論下,P為線段AC上一定點,點Q為直線CD上一動點,當點Q在射線CD上運動時(不與點C重合)∠CPQ+∠CQP與∠BAC有何數(shù)量關系?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com