【題目】某地地震牽動(dòng)著全國人民的心,某單位開展了一方有難,八方支援賑災(zāi)捐款活動(dòng).第一天收到捐款元,第三天收到捐款元.

如果第二天、第三天收到捐款的增長率相同,求捐款增長率?

按照中收到捐款的增長率不變,該單位三天一共能收到多少捐款?

【答案】(1)10%;(2) 該單位三天一共能收到元捐款.

【解析】

(1)解答此題利用的數(shù)量關(guān)系是:第一天收到捐款錢數(shù)×(1+每次增長的百分率)=第三天收到捐款錢數(shù),設(shè)出未知數(shù),列方程解答即可;

(2)第一天收到捐款錢數(shù)×(1+每次增長的百分率)=第二天收到捐款錢數(shù),依次列式子解答即可.

(1)設(shè)捐款增長率為,根據(jù)題意列方程得,

,

解得:,(不合題意,舍去),

答:捐款增長率為

第二天收到捐款為:(元).

該單位三天一共能收到的捐款為:(元).

答:該單位三天一共能收到元捐款.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=2,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件,使ABC≌△DBE,請(qǐng)問添加下面哪個(gè)條件:①BC=BE;②AC=DE;③∠A=D;④∠ACB=DEB;不能判斷ABC≌△DBE的有______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用直尺和圓規(guī)作一個(gè)角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=AOB的依據(jù)是( )

A.SASB.ASAC.AASD.SSS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分別是AC、BC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)E出發(fā),沿EB方向勻速運(yùn)動(dòng),兩者速度均為1cm/s;當(dāng)其中一點(diǎn)停止運(yùn)動(dòng)時(shí),另外一點(diǎn)也停止運(yùn)動(dòng).連接PQ、PF,設(shè)運(yùn)動(dòng)時(shí)間為ts(0<t<4).解答下列問題:

(1)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

(2)如圖①,設(shè)四邊形PFBQ的面積為ycm2,求yt之間的函數(shù)關(guān)系式;

(3)當(dāng)t為何值時(shí),四邊形PFBQ的面積與△ABC的面積之比為2:5?

(4)如圖②,連接FQ,是否存在某一時(shí)刻,使得PFQF互相垂直?若存在,求出此時(shí)t的值;若不存,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地地震牽動(dòng)著全國人民的心,某單位開展了一方有難,八方支援賑災(zāi)捐款活動(dòng).第一天收到捐款元,第三天收到捐款元.

如果第二天、第三天收到捐款的增長率相同,求捐款增長率?

按照中收到捐款的增長率不變,該單位三天一共能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABC的平分線與在∠ACE的平分線相交于點(diǎn)D.已知∠ABC=70°,∠ACB=30°,求∠A和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,E為射線BA上一點(diǎn),D為直線BC上一點(diǎn),EDEC

(1)當(dāng)點(diǎn)EAB的上,點(diǎn)DCB的延長線上時(shí)(如圖1),求證:AE+ACCD;

(2)當(dāng)點(diǎn)EBA的延長線上,點(diǎn)DBC上時(shí)(如圖2),猜想AE、ACCD的數(shù)量關(guān)系,并證明你的猜想;

(3)當(dāng)點(diǎn)EBA的延長線上,點(diǎn)DBC的延長線上時(shí)(如圖3),請(qǐng)直接寫出AE、ACCD的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長度不限),用40米長的籬笆圍成一個(gè)長方形的倉庫.

1)求長方形的面積是150平方米,求出長方形兩鄰邊的長;

2)能否圍成面積220平方米的長方形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點(diǎn),的中點(diǎn),過點(diǎn)的延長線于點(diǎn)

求證:;

當(dāng)滿足什么條件時(shí),四邊形是菱形,并證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案