【題目】如圖,在菱形ABCD中,過點DDEAB于點E,作DEBC于點F,連接EF,求證:

1ADE≌△CDF;

2)若∠A60°,AD4,求EDF的周長.

【答案】(1)見解析;(2)6

【解析】

1)利用菱形的性質得到AD=CD,∠A=C,進而利用AAS證明兩三角形全等;

2)由ADE≌△CDF得到DE=DF,進而證明出DEF是等邊三角形,再解直角三角形求出DF的長,即可求出EDF的周長.

1)∵四邊形ABCD是菱形,

ADCD,∠A=∠C

DEBA,DFCB,

∴∠AED=∠CFD90°,

ADECDF

,

∴△ADE≌△CDF;

2)∵△ADE≌△CDF

DEDF,∠ADE=∠CDF

∵菱形ABCD,DEAB于點E,∠A60°,

∴∠ADC120°,∠ADE30°,

∴∠EDF60°

∴△DEF是等邊三角形,

RtAED中,∵AD4,∠A60°,

DEsin60°AD2

∴△EDF的周長=3DE6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+3經過點A1,0)和點B5,0).

1)求該拋物線所對應的函數(shù)解析式;

2)該拋物線與直線相交于C、D兩點,點P是拋物線上的動點且位于x軸下方,直線PM∥y軸,分別與x軸和直線CD交于點M、N

連結PCPD,如圖1,在點P運動過程中,△PCD的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由;

連結PB,過點CCQ⊥PM,垂足為點Q,如圖2,是否存在點P,使得△CNQ△PBM相似?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料會暢銷、先用1800元購進一批這種飲料,面市后果然供不應求,又用8100元購進這種飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.

1)第一批飲料進貨單價多少元?

2)若兩次進飲料都按同一價格銷售,兩批全部售完后,獲利不少于2700元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列事件中,是必然事件的是(

A. 擲一次骰子,向上一面的點數(shù)是6B. 經過有交通信號燈的路口,遇到紅燈

C. 任意畫一個三角形,其內角和是D. 射擊運動員射擊一次,命中靶心

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高學生的閱讀能力,我市某校開展了“讀好書,助成長”的活動,并計劃購置一批圖書,購書前,對學生喜歡閱讀的圖書類型進行了抽樣調查,并將調查數(shù)據(jù)繪制成兩幅不完整的統(tǒng)計圖,如圖所示,請根據(jù)統(tǒng)計圖回答下列問題:

1)本次調查共抽取了 名學生,兩幅統(tǒng)計圖中的m n

2)已知該校共有3600名學生,請你估計該校喜歡閱讀“A”類圖書的學生約有多少人?

3)學校將舉辦讀書知識競賽,九年級1班要在本班3名優(yōu)勝者(21女)中隨機選送2人參賽,請用列表或畫樹狀圖的方法求被選送的兩名參賽者為一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知直線PA是一次函數(shù)的圖象,直線PB是一次函數(shù)的圖象,點P是兩直線的交點,點A、B、CQ分別是兩條直線與坐標軸的交點.若四邊形PQOB的面積是5.5,且,若存在一點D,使以A、B、P、D為頂點的四邊形是平行四邊形,則點D的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.

(1)在圖1中證明CE=CF;

(2)若∠ABC=90°,GEF的中點(如圖2),直接寫出∠BDG的度數(shù);

(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC,點PABC內一點,∠APB=∠BAC120°.若APBP4,則PC的最小值為(

A. 2B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市對一大型超市銷售的甲、乙、丙3種大米進行質量檢測.共抽查大米200袋,質量評定分為A、B兩個等級(A級優(yōu)于B級),相應數(shù)據(jù)的統(tǒng)計圖如下:

根據(jù)所給信息,解決下列問題:

(1)a=   ,b=   ;

(2)已知該超市現(xiàn)有乙種大米750袋,根據(jù)檢測結果,請你估計該超市乙種大米中有多少袋B級大米?

(3)對于該超市的甲種和丙種大米,你會選擇購買哪一種?運用統(tǒng)計知識簡述理由.

查看答案和解析>>

同步練習冊答案