【題目】下列事件中,是必然事件的是(

A. 擲一次骰子,向上一面的點(diǎn)數(shù)是6B. 經(jīng)過有交通信號(hào)燈的路口,遇到紅燈

C. 任意畫一個(gè)三角形,其內(nèi)角和是D. 射擊運(yùn)動(dòng)員射擊一次,命中靶心

【答案】C

【解析】

題目要求選必然事件,就是這個(gè)事件百分之百會(huì)發(fā)生,對(duì)四個(gè)選項(xiàng)一一分析,詳細(xì)分析見詳解.

A項(xiàng),擲一次骰子,向上一面的點(diǎn)數(shù)是6,這不是必然會(huì)發(fā)生的事件,因?yàn)檫可能出現(xiàn)點(diǎn)數(shù)是2或者3,這是一個(gè)隨機(jī)事件,所以A項(xiàng)不滿足.B項(xiàng),經(jīng)過有交通信號(hào)燈的路口,遇到紅燈,這個(gè)也不是必然會(huì)發(fā)生的事件,這是一個(gè)隨機(jī)事件,所以B項(xiàng)不滿足要求.C項(xiàng),任意畫一個(gè)三角形,其內(nèi)角和是,此事必然事件,所以C項(xiàng)滿足題目.D項(xiàng),射擊運(yùn)動(dòng)員射擊一次,命中靶心,這是一個(gè)隨機(jī)事件,所以選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點(diǎn),FAM上一點(diǎn),EFAM,垂足為F,交AD延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N

1)求證:△ABM∽△EFA

2)若AB12,BM6,FAM的中點(diǎn),求DN的長(zhǎng);

3)若AB12,DE1,BM5,求DN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠ABC=90°,AB=CD,AE=BD,若 DF·CF= ,則 SDCF=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小剛用如圖所示的兩個(gè)轉(zhuǎn)盤做配紫色游戲,游戲規(guī)則是:分別旋轉(zhuǎn)兩個(gè)轉(zhuǎn)盤,若其中一個(gè)轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一個(gè)轉(zhuǎn)出了藍(lán)色,則可以配成紫色.此時(shí)小剛獲勝,否則小明獲勝.

1)利用畫樹狀圖或列表法表示游戲所有可能出現(xiàn)的結(jié)果.

2)這個(gè)游戲?qū)﹄p方公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8分一個(gè)不透明的口袋中裝有2個(gè)紅球記為紅球1、紅球2、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.

1從中任意摸出1個(gè)球,恰好摸到紅球的概率是

2先從中任意摸出1個(gè)球,再從余下的3個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法畫樹狀圖或列表求兩次都摸到紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CBx軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,過點(diǎn)DDEAB于點(diǎn)E,作DEBC于點(diǎn)F,連接EF,求證:

1ADE≌△CDF;

2)若∠A60°,AD4,求EDF的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡(jiǎn),得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱為換根法”.

請(qǐng)用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市從不同學(xué)校隨機(jī)抽取100名初中生對(duì)使用數(shù)學(xué)教輔用書的冊(cè)數(shù)進(jìn)行調(diào)查,統(tǒng)計(jì)結(jié)果如下:

冊(cè)數(shù)

0

1

2

3

人數(shù)

10

20

30

40

關(guān)于這組數(shù)據(jù),下列說法正確的是( 。

A.眾數(shù)是2冊(cè)B.中位數(shù)是2冊(cè)

C.平均數(shù)是3冊(cè)D.方差是1.5

查看答案和解析>>

同步練習(xí)冊(cè)答案