【題目】如圖,在下列8×8的網(wǎng)格中,橫、縱坐標均為整點的數(shù)叫做格點,△ABC的頂點的坐標分別為A3,0)、B0,4)、C4,2).

1)直接寫出△ABC的形狀;

2)要求在下圖中僅用無刻度的直尺作圖:將△ABC繞點B逆時針旋轉(zhuǎn)角度到△A1BC1,其中α=∠ABC,A、C的對應(yīng)點分別為A1、C1,請你完成作圖;

3)在網(wǎng)格中找一個格點G,使得C1GAB,并直接寫出G點的坐標.

【答案】1)證明見解析;(2)畫△A1BC1見解析;(3)點G0, 3).

【解析】

1)利用勾股定理以及勾股定理的逆定理解決問題.
2)利用數(shù)形結(jié)合的思想解決問題.
3)利用數(shù)形結(jié)合的思想解決問題.

解:(1)∵A3,0)、B0,4)、C4,2),

, AC=,,

,

,

∴△ABC是直角三角形.

2)根據(jù)題目已知條件,將△ABC繞點B逆時針旋轉(zhuǎn)角度2ABC得到△A1BC1,則△A1BC1如圖所示.

3)如圖示,過C1點,作直線C1G使得C1GABy軸于點G,

由圖可知,點G坐標為:(03).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長是9,點邊上的一個動點,點邊上一點,,連接,把正方形沿折疊,使點,分別落在點,處,當點落在線段上時,線段的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,上一點,連接于點,過點于點.,,則的長是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,、兩點關(guān)于直線對稱,直線于點,交另一邊于點,且,則的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A的坐標為(0,1),點B是x軸正半軸上的一動點,以AB為邊作等腰RtABC,使BAC=90°,設(shè)點B的橫坐標為x,設(shè)點C的縱坐標為y,能表示y與x的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小元步行從家去火車站,走到 6 分鐘時,以同樣的速度回家取物品,然后從家乘出租車趕往火車站,結(jié)果比預(yù)計步行時間提前了3 分鐘.小元離家路程S()與時間t(分鐘)之間的函數(shù)圖象如圖,從家到火車站路程是( )

A.1300 B.1400 C.1600 D.1500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標系中,拋物線yax22ax+4a0)交x軸于點A、B,與y軸交于點C,AB6

1)如圖1,求拋物線的解析式;

2)如圖2,點R為第一象限的拋物線上一點,分別連接RBRC,設(shè)△RBC的面積為s,點R的橫坐標為t,求st的函數(shù)關(guān)系式;

3)在(2)的條件下,如圖3,點Dx軸的負半軸上,點Fy軸的正半軸上,點EOB上一點,點P為第一象限內(nèi)一點,連接PD、EF,PDOC于點G,DGEFPD⊥EF,連接PE,∠PEF2∠PDE,連接PBPC,過點RRT⊥OB于點T,交PC于點S,若點PBT的垂直平分線上,OBTS,求點R的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組對角互補的四邊形叫做互補四邊形.

概念理解:

①在互補四邊形中,是一組對角,若 _

②如圖1,在中,點分別在邊上,且求證:四邊形是互補四邊形.

探究發(fā)現(xiàn):如圖2,在等腰中,分別在邊上, 四邊形是互補四邊形,求證:

推廣運用:如圖3,在中,點分別在邊上,四邊形是互補四邊形,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展以“我最喜歡的職業(yè)”為主題的調(diào)查活動,通過對學(xué)生的隨機抽樣調(diào)查得到一組數(shù)據(jù),如圖是根據(jù)這組數(shù)據(jù)繪制成的不完整統(tǒng)計圖.

1)把折線統(tǒng)計圖補充完整;

2)求出扇形統(tǒng)計圖中,公務(wù)員部分對應(yīng)的圓心角的度數(shù);

3)若從被調(diào)查的學(xué)生中任意抽取一名,求取出的這名學(xué)生最喜歡的職業(yè)是“教師”的概率.

查看答案和解析>>

同步練習(xí)冊答案