【題目】如圖,在扇形中,,上一點,連接于點,過點于點.,則的長是( )

A.B.C.D.

【答案】D

【解析】

DFOAF,證△ADF是等腰直角三角形,∠ODF=30°,得出DF=AFDF=OF,OD=2OF,求出OF=,OD=,CD=OC-OD=4-2,由平行線得出△CDE∽△ODA,進而得出答案.

解:作DFOAF,如圖所示:

OA=OB=2,∠AOB=90°,
∴∠OAB=45°,∠AOD=90°-BOC=60°,
DFOA,
∴△ADF是等腰直角三角形,∠ODF=30°,
DF=AFDF=OF,OD=2OF,
AF+OF=OA=2,
OF+OF=2,
OF=,
OD=2-2,
CD=OC-OD=4-2,
CEOA
∴△CDE∽△ODA,
,即,
解得:CE=
故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A3,2)、B3,5)、C1,2).

⑴在平面直角坐標(biāo)系中畫出△ABC關(guān)于原點對稱的△A1B1C1;

⑵把△ABC繞點A順時針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2,點C2AB上.請寫出:

①旋轉(zhuǎn)角為 度;

②點B2的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.

(1)求此反比例函數(shù)的表達式;

(2)若點P在x軸上,且SACP=SBOC,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富同學(xué)們的校園生活,某校積極開展了體育類、文藝類、文化類等形式多樣的社團活動(每人僅限參加一項).李老師在九年級隨機抽取了2個班級,對這2個班級參加體育類社團活動的人數(shù)情況進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖.已知這2個班級共有的學(xué)生參加“足球”項目,且扇形統(tǒng)計圖中“足球”項目扇形圓心角為

1)這2個班參加體育類社團活動人數(shù)為______

2)請在圖中將表示“棒球”項目的圖形補充完整;

3)若該校九年級共有600名學(xué)生,請你根據(jù)上述信息估計該校九年級共有多少名學(xué)生參加“棒球”項目?

4)小明和小剛都是這2個班的學(xué)生,且都參加了體育類社團活動,請用列表或樹狀圖法求小明和小剛都參加足球社團的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方方駕駛小汽車勻速地從A地行使到B地,行駛里程為480千米,設(shè)小汽車的行使時間為t(單位:小時),行使速度為v(單位:千米/小時),且全程速度限定為不超過120千米/小時.

⑴求v關(guān)于t的函數(shù)表達式;

⑵方方上午8點駕駛小汽車從A出發(fā).

①方方需在當(dāng)天1248分至14點(含1248分和14點)間到達B地,求小汽車行駛速度v的范圍.

②方方能否在當(dāng)天1130分前到達B地?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過正方形的頂點,且與相切于點分別交兩點,連接并延長交于點

1)求證

2)連接于點,連接,若的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點,BCx軸于點C,若OBC的面積為2,且A點的縱坐標(biāo)為4,B點的縱坐標(biāo)為1

1)求反比例函數(shù)、一次函數(shù)的表達式及直線ABx軸交點E的坐標(biāo);

2)已知點Dt0)(t0),過點D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點P,與反比函數(shù)上的圖像相交于點Q,若點P位于點Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列8×8的網(wǎng)格中,橫、縱坐標(biāo)均為整點的數(shù)叫做格點,△ABC的頂點的坐標(biāo)分別為A3,0)、B0,4)、C4,2).

1)直接寫出△ABC的形狀;

2)要求在下圖中僅用無刻度的直尺作圖:將△ABC繞點B逆時針旋轉(zhuǎn)角度到△A1BC1,其中α=∠ABCA、C的對應(yīng)點分別為A1C1,請你完成作圖;

3)在網(wǎng)格中找一個格點G,使得C1GAB,并直接寫出G點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABCAC,BC邊上各取一點P,Q,使AP=CQAQ,BP相交于點O.若BO=6PO=2,則AP的長,AO的長分別為__________

查看答案和解析>>

同步練習(xí)冊答案