【題目】如圖,平行四邊形ABCD的面積為32,對(duì)角線BD繞著它的中點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)一定角度后,其所在直線分別交BC,AD于點(diǎn)E、F,若AF=3DF,則圖中陰影部分的面積等于_____
【答案】4
【解析】
設(shè)DF=a,則AF=3a,AD=4a,設(shè)BC和AD之間的距離為h,求出BE=DF=a,根據(jù)平行四邊形的面積求出ah=8,求出陰影部分的面積= ah,即可得出答案.
設(shè)DF=a,則AF=3a,AD=4a,
設(shè)BC和AD之間的距離為h,
∵四邊形BACD是平行四邊形,
∴AD∥BE,AD=BC=4a,
BO=OD,
∵BE∥AD,
∴△BEO≌△DFO,
∴BE=DF=a,
∵平行四邊形ABCD的面積為32,
∴4a×h=32,
∴ah=8,
∴陰影部分的面積S=S△BEO+S△DFO=×(BE+DF)×h=×(a+a)×h=ah=4,
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是藥品研究所測(cè)得的某種新藥在成人用藥后,血液中的藥物濃度y(微克/毫升)隨用藥后的時(shí)間x(小時(shí))變化的圖象(圖象由線段OA與部分雙曲線AB組成).并測(cè)得當(dāng)y=a時(shí),該藥物才具有療效.若成人用藥4小時(shí),藥物開(kāi)始產(chǎn)生療效,且用藥后9小時(shí),藥物仍具有療效,則成人用藥后,血液中藥物濃度至少需要多長(zhǎng)時(shí)間達(dá)到最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高學(xué)生書(shū)寫(xiě)漢字的能力,增強(qiáng)保護(hù)漢子的意識(shí),某校舉辦了首屆“漢字聽(tīng)寫(xiě)大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測(cè)試同時(shí)聽(tīng)寫(xiě)100個(gè)漢字,每正確聽(tīng)寫(xiě)出一個(gè)漢字得1分,本次決賽,學(xué)生成績(jī)?yōu)?/span>(分),且,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績(jī)(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
請(qǐng)根據(jù)表格提供的信息,解答以下問(wèn)題:
(1)本次決賽共有 名學(xué)生參加;
(2)直接寫(xiě)出表中a= ,b= ;
(3)請(qǐng)補(bǔ)全下面相應(yīng)的頻數(shù)分布直方圖;
(4)若決賽成績(jī)不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玉米種子的價(jià)格為a元/千克,如果一次購(gòu)買(mǎi)2千克以上的種子,超過(guò)2千克部分的種子價(jià)格打8折.下表是購(gòu)買(mǎi)量x(千克)、付款金額y(元)部分對(duì)應(yīng)的值,請(qǐng)你結(jié)合表格:
購(gòu)買(mǎi)量x(千克) | 1.5 | 2 | 2.5 | 3 |
付款金額y(元) | 7.5 | 10 | 12 | b |
(1)寫(xiě)出a、b的值,a= b= ;
(2)求出當(dāng)x>2時(shí),y關(guān)于x的函數(shù)關(guān)系式;
(3)甲農(nóng)戶(hù)將18.8元錢(qián)全部用于購(gòu)買(mǎi)該玉米種子,計(jì)算他的購(gòu)買(mǎi)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=ax2+bx+2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,AB=4,矩形OBDC的邊CD=1,延長(zhǎng)DC交拋物線于點(diǎn)E.
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)P是直線EO上方拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作y軸的平行線交直線EO于點(diǎn)G,作PH⊥EO,垂足為H.設(shè)PH的長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為m,求l與m的函數(shù)關(guān)系式(不必寫(xiě)出m的取值范圍),并求出l的最大值;
(3)如果點(diǎn)N是拋物線對(duì)稱(chēng)軸上的一點(diǎn),拋物線上是否存在點(diǎn)M,使得以M,A,C,N為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫(xiě)出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“龜兔賽跑”是同學(xué)們熟悉的寓言故事.如圖所示,表示了寓言中的龜、兔的路程S和時(shí)間t的關(guān)系(其中直線段表示烏龜,折線段表示兔子).下列敘述正確的是( )
A. 賽跑中,兔子共休息了50分鐘
B. 烏龜在這次比賽中的平均速度是0.1米/分鐘
C. 兔子比烏龜早到達(dá)終點(diǎn)10分鐘
D. 烏龜追上兔子用了20分鐘
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(11分)如圖,拋物線y=ax2+bx﹣3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過(guò)點(diǎn)(2,﹣3a),對(duì)稱(chēng)軸是直線x=1,頂點(diǎn)是M.
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;
(2)經(jīng)過(guò)C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)直線y=﹣x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過(guò)A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說(shuō)明理由;
(4)當(dāng)E是直線y=﹣x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請(qǐng)直接寫(xiě)出結(jié)論).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在實(shí)施城鄉(xiāng)清潔工作過(guò)程中,某校對(duì)各個(gè)班級(jí)教室衛(wèi)生情況的考評(píng)包括以下幾項(xiàng):黑板、門(mén)窗、桌椅、地面.一天,兩個(gè)班級(jí)的各項(xiàng)衛(wèi)生成績(jī)分別如下表:(單位:分)
黑板 | 門(mén)窗 | 桌椅 | 地面 | |
一班 | 95 | 85 | 89 | 91 |
二班 | 90 | 95 | 85 | 90 |
(1)兩個(gè)班的平均得分分別是多少?
(2)按學(xué)校的考評(píng)要求,將黑板、門(mén)窗、桌椅、地面這四項(xiàng)得分依次按15%、10%、35%、40%的權(quán)重計(jì)算各班的衛(wèi)生成績(jī),那么哪個(gè)班的衛(wèi)生成績(jī)較高?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com