【題目】已知二次函數(shù)的不符對(duì)應(yīng)值如下表:

且方程的兩根分別為 ,下面說法錯(cuò)誤的是( ).

A. B.

C. 當(dāng)時(shí), D. 當(dāng)時(shí),有最小值

【答案】C

【解析】

分別結(jié)合圖表中數(shù)據(jù)得出二次函數(shù)對(duì)稱軸以及圖像與x軸交點(diǎn)范圍和自變量xy的對(duì)應(yīng)情況,進(jìn)而得出答案.

A、利用圖表中x=0,1時(shí)對(duì)應(yīng)y的值相等,x=﹣1,2時(shí)對(duì)應(yīng)y的值相等,∴x=﹣2,5時(shí)對(duì)應(yīng)y的值相等,∴x=﹣2,y=5,故此選項(xiàng)正確;B、方程ax2+bc+c=0的兩根分別是x1、x2(x1<x2),且x=1時(shí)y=﹣1;x=2時(shí),y=1,∴1<x2<2,故此選項(xiàng)正確;C、由題意可得出二次函數(shù)圖像向上,∴當(dāng)x1<x<x2時(shí),y<0,故此選項(xiàng)錯(cuò)誤;D、∵利用圖表中x=0,1時(shí)對(duì)應(yīng)y的值相等,∴當(dāng)x=時(shí),y有最小值,故此選項(xiàng)正確不合題意.所以選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過點(diǎn)及原點(diǎn),頂點(diǎn)為

(1)求拋物線的解析式:

(2)試判斷的形式,并說明理由:

(3)是拋物線上第二象限內(nèi)的動(dòng)點(diǎn),過點(diǎn)軸,垂足為,是否存在點(diǎn)使得以點(diǎn)、為頂點(diǎn)的三角形與相似?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】峨眉河是峨眉的一個(gè)風(fēng)景點(diǎn).如圖,河的兩岸平行于,河岸上有一排間隔為米的彩燈柱、、、…,小華在河岸處測(cè)得,然后沿河岸走了米到達(dá)處,測(cè)得,求這條河的寬度(參考數(shù)據(jù):,).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的角平分線CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列結(jié)論:

①∠CEG=2∠DCB;②∠DFB= ∠CGE;③∠ADC=∠GCD;④CA平分∠BCG.其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=kx+b與雙曲線y=交于A(2,n)、B(﹣3,﹣2)兩點(diǎn),與x軸,y軸分別交于C、D兩點(diǎn).

(1)試求雙曲線y=的解析式;

(2)試求直線y=kx+b的解析式;

(3)試求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)從以下兩個(gè)小題中任選一個(gè)作答,若多選,則按所選的第一題計(jì)分.

A.如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,沿軸向右平移后得到,點(diǎn)的對(duì)應(yīng)點(diǎn)是直線上一點(diǎn),則點(diǎn)與其對(duì)應(yīng)點(diǎn)間的距離為__________

B.比較__________的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)、點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),連接,且、在同一條直線上,則的長為(

A. 3 B. C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊長為20cm,ABC=120°,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過點(diǎn)PPQBD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<5.

(1)設(shè)四邊形PQCB的面積為S,求St的關(guān)系式;

(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?

(3)直線PNAC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案