【題目】如圖,在中,,,,由繞點順時針旋轉(zhuǎn)得到,其中點與點、點與點是對應(yīng)點,連接,且、、在同一條直線上,則的長為( )
A. 3 B. C. 4 D.
【答案】A
【解析】
先利用互余計算出∠BAC=30°,再根據(jù)含30度的直角三角形三邊的關(guān)系得到AB=2BC=2,接著根據(jù)旋轉(zhuǎn)的性質(zhì)得A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,于是可判斷△CAA′為等腰三角形,所以∠CAA′=∠A′=30°,再利用三角形外角性質(zhì)計算出∠B′CA=30°,可得B′A=B′C=1,然后利用AA′=AB′+A′B′進行計算.
∵∠ACB=90°,∠B=60°,
∴∠BAC=30°,
∴AB=2BC=2×1=2,
∵△ABC繞點C順時針旋轉(zhuǎn)得到△A′B′C′,
∴A′B′=AB=2,B′C=BC=1,A′C=AC,∠A′=∠BAC=30°,∠A′B′C=∠B=60°,
∴△CAA′為等腰三角形,
∴∠CAA′=∠A′=30°,
∵A、B′、A′在同一條直線上,
∴∠A′B′C=∠B′AC+∠B′CA,
∴∠B′CA=60°-30°=30°,
∴B′A=B′C=1,
∴AA′=AB′+A′B′=2+1=3.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點為平面直角坐標(biāo)系的原點,在矩形中,兩邊、分別在軸和軸上,且點滿足:.
(1)求點的坐標(biāo)(___,_____);
(2)若過點的直線與矩形的邊交于點,且將矩形的面積分為兩部分,
①求直線的解析式;
②在直線確定一點,使得的面積等于矩形的面積,求點的坐標(biāo);
(3)在線段上,,在坐標(biāo)軸上,為(2)中直線上一動點,若四點、、、構(gòu)成平行四邊形,直接寫出的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某山是某市民周末休閑爬山的好去處,但總有些市民隨手丟垃圾的情況出現(xiàn).為了美化環(huán)境,提高市民的環(huán)保意識,某外國語學(xué)校某附屬學(xué)校青年志愿者協(xié)會組織50人的青年志愿者團隊,在周末前往臨某森林公園撿垃圾.已知平均每分鐘男生可以撿3件垃圾,女生可以撿2件垃圾,且該團隊平均每分鐘可以撿130件垃圾.請問該團隊的男生和女生各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點G、H分別是BC、CD邊上的點,直線GH與AB、AD的延長線相交于點E、F,連接AG、AH.
(1)當(dāng)BG=2,DH=3時,則GH:HF= ,∠AGH= °;
(2)若BG=3,DH=1,求DF、EG的長;
(3)設(shè)BG=x,DH=y,若△ABG∽△FDH,求y與x之間的函數(shù)關(guān)系式,并求出y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓E是三角形ABC的外接圓, ∠BAC=45°,AO⊥BC于O,且BO=2,CO=3,分別以BC、AO所在直線建立x軸.
(1)求三角形ABC的外接圓直徑;
(2)求過ABC三點的拋物線的解析式;
(3)設(shè)P是(2)中拋物線上的一個動點,且三角形AOP為直角三角形,則這樣的點P有幾個?(只需寫出個數(shù),無需解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點在斜邊上,連接,把沿直線翻折,使點落在同一平面內(nèi)的點處.當(dāng)與的直角邊垂直時,的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關(guān)信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x | 200﹣2x |
已知該商品的進價為每件30元,設(shè)銷售該商品的每天利潤為y元
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在平面直角坐標(biāo)系中,拋物線經(jīng)過A(—2,—4 ),O(0,0),B(2,0)三點.
(1)求拋物線的解析式和頂點坐標(biāo)D.
(2)若使軸上一點P,使P 到A、D的距離之和最小,求P的坐標(biāo).
(3)若拋物線對稱軸上一點M,使AM + OM最小,求AM + OM的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com