【題目】如圖,P是直線l外一點(diǎn),AB,C三點(diǎn)在直線l上,且PBl于點(diǎn)B,∠APC90°,則下列結(jié)論:①線段AP是點(diǎn)A到直線PC的距離;②線段BP的長(zhǎng)是點(diǎn)P到直線l的距離;③PA,PB,PC三條線段中,PB最短;④線段PC的長(zhǎng)是點(diǎn)P到直線l的距離,其中,正確的是( )

A. ②③ B. ①②③ C. ③④ D. ①②③④

【答案】A

【解析】

根據(jù)“從直線外一點(diǎn)到這條直線上各點(diǎn)所連的線段中,垂線段最短”;“從直線外一點(diǎn)到這條直線的垂線段的長(zhǎng)度,叫做點(diǎn)到直線的距離”進(jìn)行判斷即可解答

線段AP是點(diǎn)A到直線PC的距離,錯(cuò)誤

線段BP的長(zhǎng)是點(diǎn)P到直線l的距離,正確;

PAPB,PC三條線段中,PB最短,正確;

線段PC的長(zhǎng)是點(diǎn)P到直線l的距離,錯(cuò)誤

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上線段的長(zhǎng)度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如:如圖,若點(diǎn)A,B在數(shù)軸上分別對(duì)應(yīng)的數(shù)為a,b(a<b),則AB的長(zhǎng)度可以表示為AB=ba

請(qǐng)你用以上知識(shí)解決問(wèn)題:

如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向左移動(dòng)2個(gè)單位長(zhǎng)度到達(dá)A點(diǎn),再向右移動(dòng)3個(gè)單位長(zhǎng)度到達(dá)B點(diǎn),然后向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)C點(diǎn)

(1)請(qǐng)你在圖的數(shù)軸上表示出A,B,C三點(diǎn)的位置

(2)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左移動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和3個(gè)單位長(zhǎng)度的速度向右移動(dòng),設(shè)移動(dòng)時(shí)間為t秒.

當(dāng)t=2時(shí),求ABAC的長(zhǎng)度;

試探究:在移動(dòng)過(guò)程中,3AC-4AB的值是否隨著時(shí)間t的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:

如圖,若點(diǎn)B把線段分成兩條長(zhǎng)度相等的線段ABBC,則點(diǎn)B叫做線段AC的中點(diǎn).

回答問(wèn)題:

(1)如圖,在數(shù)軸上,點(diǎn)A所表示的數(shù)是﹣2,點(diǎn)B所表示的數(shù)是0,點(diǎn)C所表示的數(shù)是3.

A是線段DB的中點(diǎn),則點(diǎn)D表示的數(shù)是   ;

E是線段AC的中點(diǎn),求點(diǎn)E表示的數(shù).

(2)在數(shù)軸上,若點(diǎn)M表示的數(shù)是m,點(diǎn)N所表示的數(shù)是n,點(diǎn)P是線段MN的中點(diǎn).

若點(diǎn)P表示的數(shù)是1,則m、n可能的值是   (填寫(xiě)符合要求的序號(hào));

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含m、n的代數(shù)式表示點(diǎn)P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB=20cm,點(diǎn)CAB上的一個(gè)動(dòng)點(diǎn),點(diǎn)DE分別是ACBC的中點(diǎn)

(1)若點(diǎn)C恰好是AB中點(diǎn),則DE的長(zhǎng)是多少?(直接寫(xiě)出結(jié)果)

(2)若BC=14cm,求DE的長(zhǎng)

(3)試說(shuō)明不論BC取何值(不超過(guò)20cm),DE的長(zhǎng)不變

(4)知識(shí)遷移:如圖,已知∠AOB=130°,過(guò)角的內(nèi)部任一點(diǎn)C畫(huà)射線OC,若OD,OE分別平分∠AOC和∠BOC,試求出∠DOE的大小,并說(shuō)明∠DOE的大小與射線OC的位置是否有關(guān)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開(kāi)挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來(lái)完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:

租金(單位:元/臺(tái)時(shí))

挖掘土石方量(單位:m3/臺(tái)時(shí))

甲型挖掘機(jī)

100

60

乙型挖掘機(jī)

120

80

1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?

2)如果每小時(shí)支付的租金不超過(guò)850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知3x2-5x+1=0,求下列各式的值:①3x+;②9x2+;

(2)若3xm+1-2xn-1+xn是關(guān)于x的二次多項(xiàng)式,試求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年9月,莉莉進(jìn)入八中初一,在準(zhǔn)備開(kāi)學(xué)用品時(shí),她決定購(gòu)買(mǎi)若干個(gè)某款筆記本,甲、乙兩家文具店都有足夠數(shù)量的該款筆記本,這兩家文具店該款筆記本標(biāo)價(jià)都是20/個(gè).甲文具店的銷(xiāo)售方案是:購(gòu)買(mǎi)該筆記本的數(shù)量不超過(guò)5個(gè)時(shí),原價(jià)銷(xiāo)售;購(gòu)買(mǎi)該筆記本超過(guò)5個(gè)時(shí),從第6個(gè)開(kāi)始按標(biāo)價(jià)的八折出售:乙文具店的銷(xiāo)售方案是:不管購(gòu)買(mǎi)多少個(gè)該款筆記本,一律按標(biāo)價(jià)的九折出售.

(1)若設(shè)莉莉要購(gòu)買(mǎi)xx>5)個(gè)該款筆記本,請(qǐng)用含x的代數(shù)式分別表示莉莉到甲文具店和乙文具店購(gòu)買(mǎi)全部該款筆記本所需的費(fèi)用;

(2)在(1)的條件下,莉莉購(gòu)買(mǎi)多少個(gè)筆記本時(shí),到乙文具店購(gòu)買(mǎi)全部筆記本所需的費(fèi)用與到甲文具店購(gòu)買(mǎi)全部筆記本所需的費(fèi)用相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線BD上有一點(diǎn)C,則:

(1)1和∠ABC是直線AB,CE被直線_____所截得的____角;

(2)2和∠BAC是直線CE,AB被直線____所截得的_____角;

(3)3和∠ABC是直線_____、_____被直線_____所截得的____角;

(4)ABC和∠ACD是直線____、_____被直線_____所截得的角;

(5)ABC和∠BCE是直線_____、______被直線所截得的_____角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三邊長(zhǎng)a=3,b=4,c=5,則它的內(nèi)切圓半徑是

查看答案和解析>>

同步練習(xí)冊(cè)答案