【題目】一個滑道由滑坡(AB段)和緩沖帶(BC段)組成,如圖所示,滑雪者在滑坡上滑行的距離y(單位:m)和滑行時間t1(單位:s)滿足二次函數(shù)關(guān)系,并測得相關(guān)數(shù)據(jù):

滑行時間t1/s

0

1

2

3

4

滑行距離y1/s

0

4.5

14

28.5

48

滑雪者在緩沖帶上滑行的距離y2(單位:m)和在緩沖帶上滑行時間t2(單位:s)滿足:y252t22t22,滑雪者從A出發(fā)在緩沖帶BC上停止,一共用了23s,則滑坡AB的長度( 。┟

A.270B.280C.375D.450

【答案】A

【解析】

設(shè)y1=a t12+bt1,(1,4.5)(2,14)代入函數(shù)解析即可求解,y252t2t2,函數(shù)在對稱軸上取得最大值,即滑雪者停下,求出t值,即可求解.

設(shè)y1=a t12+bt1,
(1,4.5)(2,14)代入函數(shù)解析式得
解得:,
∴二次函數(shù)解析式為:y1=2.5 t12+2t1①;
y252t2t2函數(shù)在對稱軸上取得最大值,即滑雪者停下,
此時,t==13
則:滑雪者在AB段用的時間為2313=10,
t=10代入①式,
解得:則AB=y1=270()
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)和一次函數(shù),其中一次

函數(shù)圖象經(jīng)過(a,b)與(a+1,b+k)兩點(diǎn).

(1) 求反比例函數(shù)的解析式.

(2) 如圖,已知點(diǎn)A是第一象限內(nèi)上述兩個函數(shù)圖象的交點(diǎn),A點(diǎn)坐標(biāo).

(3) 利用(2)的結(jié)果,請問:X軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于某一函數(shù)給出如下定義:對于任意實(shí)數(shù),當(dāng)自變量時,函數(shù)關(guān)于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由兩部分共同組成,則函數(shù)為原函數(shù)的對折函數(shù),如函數(shù)()的對折函數(shù)為.

(1)求函數(shù)()的對折函數(shù);

(2)若點(diǎn)在函數(shù)()的對折函數(shù)的圖象上,求的值;

(3)當(dāng)函數(shù)()的對折函數(shù)與軸有不同的交點(diǎn)個數(shù)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,,DAB=60°,點(diǎn)EAD邊的中點(diǎn)點(diǎn)MAB邊上一動點(diǎn)不與點(diǎn)A重合,延長ME交射線CD于點(diǎn)N,連接MDAN

求證:四邊形AMDN是平行四邊形;

當(dāng)AM的值為______時,四邊形AMDN是菱形并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在Rt△ABC中,∠C=90°,點(diǎn)E在斜邊AB上,以AE為直徑的⊙OBC邊相切于點(diǎn)D,連結(jié)AD.

1)求證:AD是∠BAC的平分線;

2)若AC=3BC=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)內(nèi)有一塊矩形油菜花田地(數(shù)據(jù)如圖示,單位:m.)現(xiàn)在其中修建一條觀花道(圖中陰影部分)供游人賞花.設(shè)改造后剩余油菜花地所占面積為ym2.

(1)yx的函數(shù)表達(dá)式;

(2)若改造后觀花道的面積為13m2,求x的值;

(3)若要求 0.5≤ x ≤1,求改造后剩余油菜花地所占面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,點(diǎn)A的坐標(biāo)為(0,1),取一點(diǎn)Bb0),連接AB,作線段AB的垂直平分線,過點(diǎn)BX軸的垂線,記,的交點(diǎn)為P

1)當(dāng)b=3時,在圖1中補(bǔ)全圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡)。

2)小慧多次取不同數(shù)值b,得出相應(yīng)的點(diǎn)P,并把這些點(diǎn)用平滑的曲線連接起來,發(fā)現(xiàn):這些點(diǎn)P竟然在一條曲線L上。

①設(shè)點(diǎn)P的坐標(biāo)為(xy),試求yx之間的關(guān)系式,并指出曲線L是哪種曲線。

②設(shè)點(diǎn)Px軸,y軸的距離分別為,求+的范圍。當(dāng)+=8時,求點(diǎn)P的坐標(biāo)。

③將曲線在直線y=2下方的部分沿直線y=2向上翻折,得到一條“W”形狀的新曲線,若直線y=kx+3與這條“W”形狀的新曲線有4個交點(diǎn),直接寫出k的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ABC90°,BABC2,將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)60°得到△DEC,連接BD,則BD2的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以為圓心,半徑為2的圓與軸交于、兩點(diǎn),與軸交于,兩點(diǎn),點(diǎn)為圓上一動點(diǎn),,當(dāng)點(diǎn)在圓的運(yùn)動過程中,線段的長度的最小值為__________

查看答案和解析>>

同步練習(xí)冊答案