試題分析:(1)連結(jié)AD,根據(jù)圓的基本性質(zhì)可得AD=AB,再根據(jù)圓周角定理可得∠ACB=90°,即AC⊥BD,即可證得結(jié)論;
(2)在Rt△ADG中,根據(jù)勾股定理可表示出DG的長,再證得Rt△AFG∽Rt△DBG,根據(jù)相似三角形的性質(zhì)即可證得結(jié)論;
(3)在點D運動過程中,若點G落在線段OB上,且△FOG∽△ABC時,由Rt△AFG∽Rt△ABC,可證得Rt△FOG∽Rt△AFG,再根據(jù)相似三角形的性質(zhì)求解即可.
(1)連結(jié)AD
∵點D、B在弧BE上
∴AD=AB
∵點C在半圓O上,AB為半圓O的直徑,
∴∠ACB=90°,即AC⊥BD,
∴DC=BC;
(2)∵AD=AB=10,AG=x,
∴BG=10-x,
∵DG⊥AB于點G,
∴在Rt△ADG中,DG
2=AD
2-AG
2=100-x
2,
∴DG=
∵∠CAB+∠B=∠D+∠B=90°,
∴∠FAG=∠D,
∴Rt△AFG∽Rt△DBG,
∴FG/AG=BG/DG,
∴FG/x="(10-x)/"
,
∴FG="x(10-x)/"
則y=FG
2=
.
其中x的取值范圍為0≤x≤10;
(3)在點D運動過程中,若點G落在線段OB上,且△FOG∽△ABC時,
∵Rt△AFG∽Rt△ABC,
∴Rt△FOG∽Rt△AFG,
∴FG
2=AG·OG=x(x-5),
∴
=x(x-5),解得:x=
經(jīng)檢驗可知:AG=
.
綜上所述,當(dāng)△FOG∽△ABC時,AG=
.
點評:此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.