【題目】在平行四邊形ABCD中,AC、BD交于點O,過點O作直線EF、GH,分別交平行四邊形的四條邊于E、G、F、H四點,連接EG、GF、FH、HE.
(1)如圖1,試判斷四邊形EGFH的形狀,并說明理由;
(2)如圖2,當EF⊥GH,AC=BD時,四邊形EGFH的形狀是;
(3)在(2)的條件下,若AC⊥BD(如圖3),四邊形EGFH的形狀是 .
【答案】
(1)解:四邊形EGFH是平行四邊形.
證明:∵平行四邊形ABCD的對角線AC、BD交于點O.
∴點O是ABCD的對稱中心.
∴EO=FO,GO=HO.
∴四邊形EGFH是平行四邊形
(2)菱形
(3)正方形
【解析】解:(2)∵四邊形EGFH是平行四邊形,EF⊥GH,AC=BD
∴四邊形EGFH是菱形;
所以答案是:菱形;
⑶四邊形EGFH是正方形;理由如下
∵AC=BD,
∴ABCD是矩形;
又∵AC⊥BD,
∴ABCD是正方形,
∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;
∵EF⊥GH,
∴∠GOF=90°;
∠BOG+∠BOF=∠COF+∠BOF=90°
∴∠BOG=∠COF;
∴△BOG≌△COF(ASA);
∴OG=OF,同理可得:EO=OH,
∴GH=EF;
由(2)知四邊形EGFH是菱形,
又EF=GH,
∴四邊形EGFH是正方形.
所以答案是:正方形.
【考點精析】通過靈活運用平行四邊形的性質,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分即可以解答此題.
科目:初中數學 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點E,∠BED的角平分線EF與DC交于點F,若AB=9,DF=2FC,則BC= .(結果保留根號)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩個工程隊同時開始維修某一段路面,一段時間后,甲隊被調往別處,乙隊又用了2小時完成了剩余的維修任務.已知乙隊每小時維修路面的長度保持不變,甲隊每小時維修路面30米.甲、乙兩隊在此路段維修路面的總長度y(米)與維修時間x(時)之間的函數圖象如圖所示.
(1)甲隊調離時,甲、乙兩隊已維修路面的總長度為
(2)求此次維修路面的總長度a.
(3)求甲隊調離后y與x之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】從共享單車,共享汽車等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經濟模式在各個領域迅速普及應用,越來越多的企業(yè)與個人成為參與者與受益者.根據國家信息中心發(fā)布的《中國分享經濟發(fā)展報告2017》顯示,2016年我國共享經濟市場交易額約為34520億元,比上年增長103%;超6億人參與共享經濟活動,比上年增加約1億人.
下圖是源于該報告中的中國共享經濟重點領域市場規(guī)模統(tǒng)計圖:
(1)請根據統(tǒng)計圖解答下列問題:
①圖中涉及的七個重點領域中,2016年交易額的中位數是_________億元.
②請分別計算圖中的“知識技能”和“資金”兩個重點領域從2015年到2016年交易額的增長率(精確到1%),并就這兩個重點領域中的一個分別從交易額和增長率兩個方面,談談你的認識.
(2)小宇和小強分別對共享經濟中的“共享出行”和“共享知識”最感興趣,他們上網查閱了相關資料,順便收集到四個共享經濟領域的圖標,并將其制成編號為A,B,C,D的四張卡片(除編號和內容外,其余完全相同).他們將這四張卡片背面朝上,洗勻放好,從中隨機抽取一張(不放回),再從中隨機抽取一張.請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號A,B,C,D表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知函數y=﹣ x+b的圖象與x軸、y軸分別交于點A、B,與函數y=x的圖象交于點M,點M的橫坐標為2.
(1)求點A的坐標;
(2)在x軸上有一動點P(a,0)(其中a>2),過點P作x軸的垂線,分別交函數y=﹣ +b和y=x的圖象于點C、D.
①若OB=2CD,求a的值;
②是否存在這樣的點P,使以B、O、C、D為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB、CD交于點E、F,連結BF交AC于點M,連結DE、BO.若∠COB=60°,FO=FC,則下列結論:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正確結論的個數是( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=15cm,點E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點A恰好落在EC上的點A′處,則A′C=cm.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com