【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點(diǎn)P由B點(diǎn)出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動(dòng),速度為2cm/s;點(diǎn)Q由A點(diǎn)出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),速度為cm/s;若設(shè)運(yùn)動(dòng)的時(shí)間為t(s)(0<t<3),解答下列問題:
(1)如圖①,連接PC,當(dāng)t為何值時(shí)△APC∽△ACB,并說明理由;
(2)如圖②,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),是否存在某一時(shí)刻t,使得點(diǎn)P在線段QC的垂直平分線上,請(qǐng)說明理由;
(3)如圖③,當(dāng)點(diǎn)P,Q運(yùn)動(dòng)時(shí),線段BC上是否存在一點(diǎn)G,使得四邊形PQGB為菱形?若存在,試求出BG長(zhǎng);若不存在請(qǐng)說明理由.
【答案】(1)t=,理由見解析;(2)存在,t=1,理由見解析;(3)不存在,理由見解析.
【解析】
(1)結(jié)合直角三角形性質(zhì),由△APC∽△ACB,得;(2)過點(diǎn)P作PM⊥AC,根據(jù)線段垂直平分線性質(zhì),求QM,AM的表達(dá)式,證△APM∽△ABC,得 ,;(3)假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,則PQ∥BG,PQ=BG,由△APQ∽△ABC,得,得BP=2t=3,故PQ≠BP.
(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,
∴AB=6,
由運(yùn)動(dòng)知,BP=2t,AQ= ,
∴AP=6﹣2t,
∵△APC∽△ACB,
∴t= ;
(2)存在,
理由:如圖②,由運(yùn)動(dòng)知,BP=2t,AQ=,
∴AP=6﹣2t,CQ= ,
∵點(diǎn)P是CQ的垂直平分線上,
過點(diǎn)P作PM⊥AC,
∴QM=CM=
∴AM=AQ+QM= =(3+t)
∵∠ACB=90°,∴PM∥BC,
∴△APM∽△ABC
∴
∴解得t=1;
(3)不存在
理由:由運(yùn)動(dòng)知,BP=2t,,
∴AP=6﹣2t,
假設(shè)線段BC上是存在一點(diǎn)G,使得四邊形PQGB為平行四邊形,
∴PQ∥BG,PQ=BG,
∴△APQ∽△ABC,,
∴,
∴BP=2t=3,
∴PQ≠BP,
∴平行四邊形PQGB不可能是菱形.即:線段BC上不存在一點(diǎn)G,使得四邊形PQGB為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,四邊形ABCD內(nèi)接于以BC為直徑的圓,圓心為O,且AB=AD,延長(zhǎng)CB、DA交于P,過C點(diǎn)作PD的垂線交PD的延長(zhǎng)線于E,且PB=BO,連接OA.
(1)求證:OA∥CD;
(2)求線段BC:DC的值;
(3)若CD=18,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們定義直線y=ax-a為拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)的“衍生直線”;有一個(gè)頂點(diǎn)在拋物線上,另有一個(gè)頂點(diǎn)在y軸上的三角形為其“衍生三角形”.已知拋物線與其“衍生直線”交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與x軸負(fù)半軸交于點(diǎn)C.
(1)填空:該拋物線的“衍生直線”的解析式為 ,點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)如圖,點(diǎn)M為線段CB上一動(dòng)點(diǎn),將△ACM以AM所在直線為對(duì)稱軸翻折,點(diǎn)C的對(duì)稱點(diǎn)為N,若△AMN為該拋物線的“衍生三角形”,求點(diǎn)N的坐標(biāo);
(3)當(dāng)點(diǎn)E在拋物線的對(duì)稱軸上運(yùn)動(dòng)時(shí),在該拋物線的“衍生直線”上,是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程的解為整數(shù),且不等式組無解,則這樣的非負(fù)整數(shù)a有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一天晚上,小穎由路燈A下的B處向正東走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米.當(dāng)她繼續(xù)向正東走到D處時(shí),測(cè)得此時(shí)影子DE的一端E到路燈A的仰角為45°.已知小穎的身高為1.5米,那么路燈AB的高度是多少米?( )
A.4米B.4.5米C.5米D.6米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘運(yùn)沙船裝載著5000m3沙子,到達(dá)目的地后開始卸沙,設(shè)平均卸沙速度為v(單位:m3/小時(shí)),卸沙所需的時(shí)間為t(單位:小時(shí)).
(1)求v關(guān)于t的函數(shù)表達(dá)式,并用列表描點(diǎn)法畫出函數(shù)的圖象;
(2)若要求在20小時(shí)至25小時(shí)內(nèi)(含20小時(shí)和25小時(shí))卸完全部沙子,求卸沙的速度范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形內(nèi)作正三角形,連接并延長(zhǎng)交于F,則為_______________,若,則長(zhǎng)度為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過原點(diǎn)及點(diǎn)(, ),且圖象與x軸的另一交點(diǎn)到原點(diǎn)的距離為1,求該二次函數(shù)解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是小區(qū)常見的漫步機(jī),當(dāng)人踩在踏板上,握住扶手,像走路一樣抬腿,就會(huì)帶動(dòng)踏板連桿繞軸旋轉(zhuǎn).如圖2,從側(cè)面看,踏板靜止DE上的線段AB重合,測(cè)得BE長(zhǎng)為0.21m,當(dāng)踏板連桿繞著A旋轉(zhuǎn)到AC處時(shí),測(cè)得∠CAB=42°,點(diǎn)C到地面的距離CF長(zhǎng)為0.52m,當(dāng)踏板連桿繞著點(diǎn)A旋轉(zhuǎn)到AG處∠GAB=30°時(shí),求點(diǎn)G距離地面的高度GH的長(zhǎng).(精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com