【題目】如圖,已知點A的坐標為( ,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y= (k>0)的圖象與線段OA、AB分別交于點C、D.若AB=3BD,以點C為圓心,CA的 倍的長為半徑作圓,則該圓與x軸的位置關(guān)系是(填”相離”,“相切”或“相交“).
【答案】相交
【解析】解:∵已知點A的坐標為( ,3),AB=3BD, ∴AB=3,BD=1,
∴D點的坐標為( ,1),
∴反比例函數(shù)y= 解析式為:
y= ,
∴AO直線解析式為:y=kx,
3= k,
∴k= ,
∴y= x,
∴直線y= x與反比例函數(shù)y= 的交點坐標為:
x=±1,
∴C點的橫坐標為1,
縱坐標為: ,
過C點做CE垂直于OB于點E,
則CO=2,
∴AC=2 ﹣2,
∴CA的 倍= ,
CE= ,
∵ ﹣ = ﹣ >0,
∴該圓與x軸的位置關(guān)系是相交.
所以答案是:相交.
【考點精析】本題主要考查了直線與圓的三種位置關(guān)系的相關(guān)知識點,需要掌握直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為了測量某建筑物CD的高度,先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了100m,此時自B處測得建筑物頂部的仰角是45°.已知測角儀的高度是1.5m,請你計算出該建筑物的高度.(取 =1.732,結(jié)果精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有2個白球和1個紅球,這些球除顏色外其余都相同,攪勻后從中任意摸出1個球,記錄下顏色后放回袋中并攪勻,再從中任意摸出1個球.請用畫樹狀圖的方法列出所有可能的結(jié)果,并寫出兩次摸出的球顏色相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各式.
(1)(﹣2)3﹣|2﹣5|﹣(﹣15)
(2)﹣4﹣(+)+(﹣5)﹣(﹣)
(3)(﹣+﹣+)÷(﹣)
(4)18+32÷(﹣2)3﹣(﹣4)2×5
(5)﹣32﹣[(1)3×(﹣)﹣6÷|﹣|]
(6)2×(﹣1)﹣2×13+(﹣1)×5+×(﹣13)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,巳知該山坡的坡度i(即tan∠ABC)為1: ,點P,H,B,C,A在同一個平面上,點H、B、C在同一條直線上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度數(shù)等于度;
(2)求A、B兩點間的距離(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)十分重視中學(xué)生的用眼衛(wèi)生,并定期進行視力檢測.某次檢測設(shè)有A、B兩處檢測點,甲、乙、丙三名學(xué)生各自隨機選擇其中的一處檢測視力.
(1)求甲、乙、丙三名學(xué)生在同一處檢測視力的概率;
(2)求甲、乙、丙三名學(xué)生中至少有兩人在B處檢測視力的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com