【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號和π)

【答案】
(1)解:連結(jié)OC,如圖,

∵AD為⊙O的切線,

∴AD⊥AB,

∴∠BAD=90°,

∵OD∥BC,

∴∠1=∠3,∠2=∠4,

∵OB=OC,

∴∠3=∠4,

∴∠1=∠2,

在△OCD和△OAD中,

,

∴△AOD≌△COD(SAS);

∴∠OCD=∠OAD=90°,

∴OC⊥DE,

∴DE是⊙O的切線;


(2)解:設(shè)半徑為r,則OE=AE﹣OA=6﹣r,OC=r,

在Rt△OCE中,∵OC2+CE2=OE2

∴r2+(2 2=(6﹣r)2,解得r=2,

∵tan∠COE= = = ,

∴∠COE=60°,

∴S陰影部分=S△COE﹣S扇形BOC

= ×2×2

=2 π.


【解析】(1)連結(jié)OC,如圖,先根據(jù)切線的性質(zhì)得∠BAD=90°,再根據(jù)平行線的性質(zhì),由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,則∠1=∠2,接著證明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根據(jù)切線的判定定理得到DE是⊙O的切線;(2)設(shè)半徑為r,則OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2 2=(6﹣r)2 , 解得r=2,再利用正切函數(shù)求出∠COE=60°,然后根據(jù)扇形面積公式和S陰影部分=S△COE﹣S扇形BOC進行計算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某餐廳中,一張桌子可以坐6人,如果把多張桌子擺在一起,可以有以下兩種擺放方式.

(1)當(dāng)有5張桌子時,第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(2)當(dāng)有n張桌子時,第一種擺放方式能坐  人,第二種擺放方式能坐  人,

(3)一天中午餐廳要接待98位顧客共同就餐(即桌子要擺在一起),但餐廳只有25張這樣的餐桌,若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=AD,CB=CD,AB ∥ CD.

(1)求證:四邊形ABCD是菱形.

(2)當(dāng)△ABD滿足什么條件時,四邊形ABCD是正方形.(直接寫出一個符合要求的條件).

(3)對角線AC和BD交于點O,∠ ADC =120°,AC=8, P為對角線AC上的一個動點,連接DP,將DP繞點D逆時針方向旋轉(zhuǎn)120°得到線段DP1,直接寫出A P1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求證:無論p取何值時,方程總有兩個不相等的實數(shù)根;
(2)設(shè)方程兩實數(shù)根分別為x1 , x2 , 且滿足x12+x22=3x1x2 , 求實數(shù)p的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是直線AB上的一點,∠COD是直角,OE平分∠BOC.

(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);

(2)如圖(2),將∠COD繞頂點O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個旋轉(zhuǎn)過程中,當(dāng)∠AOC的度數(shù)是多少時,∠COE=2DOB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點O到ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.

(1)如圖1,若點O在BC上,求證:AB=AC;

(2)如圖2,若點O在ABC的內(nèi)部,求證:AB=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四個幾何體分別是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5個面,9條棱,6個頂點,觀察圖形,填寫下面的空.

1)四棱柱有   個面,   條棱,   個頂點;

2)六棱柱有   個面,   條棱,   個頂點;

3)由此猜想n棱柱有   個面,   條棱,   個頂點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的個數(shù)是 ( )

①若三條線段的比為1:1:,則它們組成一個等腰直角三角形;②兩條對角線相等的平行四邊形是矩形;③對角線互相垂直的四邊形是菱形;④有兩個角相等的梯形是等腰梯形;⑤一條直線與矩形的一組對邊相交,必分矩形為兩個直角梯形。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點C(0,-2),直線l:y=kx-2k無論k取何值,直線總過定點B,

(1)求定點B的坐標.

(2)如圖1,若點D為直線BC上(點(-1,-3)除外)一動點,過點Dx軸的垂線交y= - 3于點E,點F在直線BC上,距離D點為個單位,D點橫坐標為t,ΔDEF的面積為S,求St函數(shù)關(guān)系式.

(3)若直線BC關(guān)于x軸對稱后再向上平移5個單位得到直線B1C1,如圖2,點G(1,a)H(6,b)是直線B1C1上兩點,點P(m,n)為第一象限內(nèi)(G、H兩點除外)的一點,,mn=6,直線PGPH為分別交y軸于點MN兩點,問線段OM、ON有什么數(shù)量關(guān)系,請證明.

查看答案和解析>>

同步練習(xí)冊答案