【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC.
(1)如圖(1),若∠AOC=,求∠DOE的度數(shù);
(2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2∠DOB.
【答案】(1)20°;(2)綜上所述,當(dāng)∠AOC的度數(shù)是60°或108°時(shí),∠COE=2∠DOB
【解析】
(1)依據(jù)鄰補(bǔ)角的定義以及角平分線的定義,即可得到∠COE的度數(shù),進(jìn)而得出∠DOE的度數(shù);
(2)設(shè)∠AOC=α,則∠BOC=180°-α,依據(jù)OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分兩種情況,依據(jù)∠COE=2∠DOB,即可得到∠AOC的度數(shù).
(1)∵∠AOC=40°,
∴∠BOC=140°,
又∵OE平分∠BOC,
∴∠COE=×140°=70°,
∵∠COD=90°,
∴∠DOE=90°-70°=20°;
(2)設(shè)∠AOC=α,則∠BOC=180°-α,
∵OE平分∠BOC,
∴∠COE=×(180°-α)=90°-α,
分兩種情況:
當(dāng)OD在直線AB上方時(shí),∠BOD=90°-α,
∵∠COE=2∠DOB,
∴90°-α=2(90°-α),
解得α=60°.
當(dāng)OD在直線AB下方時(shí),∠BOD=90°-(180°-α)=α-90°,
∵∠COE=2∠DOB,
∴90°-α=2(α-90°),
解得α=108°.
綜上所述,當(dāng)∠AOC的度數(shù)是60°或108°時(shí),∠COE=2∠DOB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李剛家去年養(yǎng)殖的“豐收一號(hào)”多寶魚(yú)喜獲豐收,上市20天全部售完,李剛對(duì)銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時(shí)間x(單位:天)的函數(shù)關(guān)系如圖所示.
(1)觀察圖象,直接寫(xiě)出日銷售量的最大值;
(2)求李剛家多寶魚(yú)的日銷售量y與上市時(shí)間x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,且a,b滿足|a+2|+(b﹣1)2=0.
(1)求線段AB的長(zhǎng);
(2)點(diǎn)C在數(shù)軸上對(duì)應(yīng)的數(shù)為x,且x是方程2x﹣1=x+2的解,在數(shù)軸上是否存在點(diǎn)P,使PA+PB=PC,若存在,直接寫(xiě)出點(diǎn)P對(duì)應(yīng)的數(shù);若不存在,說(shuō)明理由;
(3)在(1)的條件下,將點(diǎn)B向右平移5個(gè)單位長(zhǎng)度至點(diǎn)B’,此時(shí)在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位長(zhǎng)度/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B’處以2個(gè)單位長(zhǎng)度/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來(lái)的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),求甲、乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣3x+3與x軸交于點(diǎn)B,與y軸交于點(diǎn)A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點(diǎn)C落在雙曲線y= (k≠0)上,將正方形ABCD沿x軸負(fù)方向平移a個(gè)單位長(zhǎng)度,使點(diǎn)D恰好落在雙曲線y= (k≠0)上的點(diǎn)D1處,則a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度數(shù).
小明的解題思路是:如圖2,過(guò)P作PE∥AB,通過(guò)平行線性質(zhì),可得∠APC=50°+60°=110°.
問(wèn)題遷移:
(1)如圖3,AD∥BC,點(diǎn)P在射線OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠ADP=∠α,∠BCP=∠β.試判斷∠CPD、∠α、∠β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;
(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出∠CPD、∠α、∠β間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過(guò)點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)若AE=6,CE=2 ,求線段CE、BE與劣弧BC所圍成的圖形面積.(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題12分)小明有5張寫(xiě)著不同數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各問(wèn)題:
(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,如何抽?最大值是多少?
答:我抽取的2張卡片是 、 ,乘積的最大值為 .
(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?
答:我抽取的2張卡片是 、 ,商的最小值為 .
(3)從中取出4張卡片,用學(xué)過(guò)的運(yùn)算方法,使結(jié)果為24.如何抽。繉(xiě)出運(yùn)算式子.(寫(xiě)出一種即可)
答:我抽取的4張卡片是 、 、 、 ,
算24的式子為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的袋子里裝著質(zhì)地、大小都相同的3個(gè)紅球和2個(gè)綠球,隨機(jī)從中摸出一球,不再放回袋中,充分?jǐn)噭蚝笤匐S機(jī)摸出一球.兩次都摸到紅球的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一條南北方向的公路上,有一輛出租車停在A地,乘車的第一位客人向南走3千米下車;該車?yán)^續(xù)向南開(kāi),又走了2千米后,上來(lái)第二位客人,第二位客人乘車向北走7千米下車,此時(shí)恰好有第三位客人上車,先向北走3千米,又調(diào)頭向南走,結(jié)果下車時(shí)出租車恰好到了A地.
(1)如果以A地為原點(diǎn),向北方向?yàn)檎较,?/span>1個(gè)單位表示1千米,在數(shù)軸上表示出第一位客人和第二位客人下車的位置;
(2)第三位客人乘車走了多少千米?
(3)規(guī)定出租車的收費(fèi)標(biāo)準(zhǔn)是4千米內(nèi)付7元,超過(guò)4千米的部分每千米加付1元(不足1千米按1千米算),那么該出租車司機(jī)在這三位客人中共收了多少錢(qián)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com