【題目】已知,如圖長方形ABCD中,AB=3cm,AD=9cm,將此長方形折疊,使點B與點D重合,折痕為EF,則下列結(jié)論:①△ABE的面積為6cm2,②BF的長為5cm,③EF的長為cm,④四邊形CDEF的面積是13.5cm2.其中正確的個數(shù)有( )
A.4B.3C.2D.1
【答案】A
【解析】
①由勾股定理構(gòu)造方程可求得AE,則△ABE的面積可求;②由折疊及平行線性質(zhì),可證明BD=BE,則問題可解;③過點E作ED⊥BC于H,利用勾股定理求EF;④由①、②,可求得ED、FC,則四邊形CDEF的面積可求;
解:①由折疊可知,BE=DE
∵AD=9
∴BE=9-AE
RtΔABE中,
AB2+AE2=BE2
∴32+AE2=(9-AE)2
∴AE=4
∴△ABE的面積為
∴△ABE的面積為6cm2
故①正確;
②由①DE=BE=5
由折疊可知, ∠BEF=∠DEF
∵AD∥BC
∴∠BFE=∠DEF
∴∠BFE=∠BEF
∴BF=BE=5
故BF的長為5cm
②正確;
③過點E作ED⊥BC于H
由①、②可知,HF=1,EH=AB=3
則Rt△EHF中:
EF=
則EF的長為cm
③正確;
④由①、②可知,ED=5,FC=BC-BF=4
∴四邊形CDEF的面積:
四邊形CDEF的面積是13.5cm2.
④正確;
故應(yīng)選A
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點D,交BC于點E,延長AE至點F,使EF=AE,連接FB,F(xiàn)C.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為4的等邊△ABC中.
(1)如圖1,P,Q是BC邊上的兩點,AP=AQ,∠BAP=18°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.依題意將圖2補全,并求證PA=PM.
(3)在(2)中,當AM的值最小時,直接寫出CM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構(gòu)成一個平面圖形.如圖1是一個四邊形的木架,AB=AD=2cm,BC=5cm.
(1)扭動這個木架,四邊形的形狀就會改變,這說明了什么?
(2)如圖2,若固定三根木條AB、BC、AD不動,量得第四根木條CD=5cm,判斷此時∠B與∠D是否相等,并說明理由.
(3)在扭動這個木架過程中,當測得A、C之間的距離為6cm時,若CD的長度也是整數(shù),那么CD的長應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直線l上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為2、3、4,正放置的四個正方形的面積分別為S1,S2,S3,S4,則S1+S2+S3+S4=______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:
①;②;③;④;⑤;⑥當時,隨的增大而增大.
其中正確的說法有________(寫出正確說法的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的部分圖象如圖所示,則下列結(jié)論:
①abc>0;②3a+c=0;③當y>0時,﹣3<x<1;④b2>4ac;⑤當y=3時,x只能等于0.
其中正確結(jié)論的個數(shù)為( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD是弦,AB⊥CD于E,OF⊥AC于F,BE=OF.
(1)求證:OF∥BC;
(2)求證:△AFO≌△CEB;
(3)若EB=5cm,CD=cm,設(shè)OE=x,求x值及陰影部分的面積
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com