【題目】如圖,四邊形ABCD中,∠BAD=120°,B=D=90°,在BC,CD上分別找一點M,N,使AMN周長最小時,則∠AMN+ANM的度數(shù)是________

【答案】120°

【解析】根據(jù)要使△AMN的周長最小,即利用點的對稱,使三角形的三邊在同一直線上,作出A關于BC和CD的對稱點A′,A″,結合圖形及已知條件,即可求出結果.

如圖所示,當三角形三邊在同一條直線上周長最短,作A關于BC和CD的對稱點A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN周長的最小值.作DA延長線AH,

∵∠DAB=120°,

∴∠HAA′=60°,

∴∠AA′M+∠A″=∠HAA′=60°.

∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,

∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.

故答案為:120°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】給出下列命題:①在直角三角形ABC中,已知兩邊長為34,則第三邊長為5;②三角形的三邊a、bc滿足a2+c2=b2,則∠C=90°;③命題菱形的四條邊都相等的逆命題是四條邊相等的四邊形是菱形.④△ABC中,若 abc=12,則這個三角形是直角三角形.其中,正確命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有ABC,其中A(﹣34),B(﹣4,2),C(﹣21).把ABC繞原點順時針旋轉90°,得到A1B1C1.再把A1B1C1向左平移2個單位,向下平移5個單位得到A2B2C2

1)畫出A1B1C1A2B2C2

2)直接寫出點B1B2坐標.

3Pa,b)是ABCAC邊上任意一點,ABC經(jīng)旋轉平移后P對應的點分別為P1、P2,請直接寫出點P1、P2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以△ABC的一邊為邊畫等腰三角形,使得它的第三個頂點在△ABC的其他邊上,則可以畫出的不同的等腰三角形的個數(shù)最多為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形 ABCD 內(nèi)接于⊙O,且已知∠ADC=120°;請僅用無刻度直尺作出一個30°的圓周角.要求:

(1)保留作圖痕跡,寫出作法,寫明答案;

(2)證明你的作法的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 E 是邊長為 1 的正方形 ABCD 的對角線 BD 上的一個動點不與 B、D 兩點重合,過點 E 作直線 MN∥DC,交 AD M,交 BC N,連接 AE,作 EF⊥AE E,交直線 CB F.

(1)如圖 1,當點 F 在線段 CB 上時,通過觀察或測量,猜想△AEF 的形狀,并證明你的猜想;

(2)如圖 2,當點 F 在線段 CB 的延長線上時,其它條件不變,(1)中的結論還成立嗎?若成立,請給出證明;若不成立,請說明理由;

(3)在點 E 從點D 向點B 的運動過程中,四邊形 AFNM 的面積是否會發(fā)生變化?若發(fā)生了變化,請說明理由;若沒有發(fā)生變化,請求出其面積的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,平行四邊形ABCD對角線AC、BD交于點O,∠ADB=20°,∠ACB=50°,過點O的直線交AD于點E,交BC于點F當點E從點A向點D移動過程中(點E與點A、點D不重合),四邊形AFCE的形狀變化依次是( 。

A.平行四邊形→矩形→平行四邊形→菱形→平行四邊形

B.平行四邊形→矩形→平行四邊形→正方形→平行四邊形

C.平行四邊形→菱形→平行四邊形→矩形→平行四邊形

D.平行四邊形→矩形→菱形→正方形→平行四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在半徑為1的⊙O中,弦AB=,AC=,那么∠BAC=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).

(1)將ABC向下平移5個單位后得到A1B1C1,請畫出A1B1C1;

(2)將ABC繞原點O逆時針旋轉90°后得到A2B2C2,請畫出A2B2C2;

(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)

查看答案和解析>>

同步練習冊答案