【題目】如圖,∠ABC>ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點 E,則∠AEC與∠ADC、ABC 之間存在的等量關(guān)系是(

A. AEC=ABC﹣2ADC B. AEC=

C. AEC= ABC﹣ADC D. AEC=

【答案】B

【解析】首先延長BCAD于點F,由三角形外角的性質(zhì),可得∠BCD=B+BAD+D,又由角平分線的性質(zhì),即可求得答案.

如圖,

延長BCAD于點F,

∵∠BFD=B+BAD,

∴∠BCD=BFD+D=B+BAD+D,

CE平分∠BCD,AE平分∠BAD

∴∠ECD=ECB=BCD,EAD=EAB=BAD,

∵∠E+ECB=B+EAB,

∴∠E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)=(BD),

即∠AEC=.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點為D,其圖象與x軸的交點A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是( 。

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時,△ABD是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在數(shù)軸上有兩點A、B,回答下列問題
(1)寫出A、B兩點所表示的數(shù),并求線段AB的長;
(2)將點A向左移動個單位長度得到點C,點C表示的數(shù)是多少,并在數(shù)軸上表示出來
(3)數(shù)軸上存在一點D,使得C、D兩點間的距離為8,請寫出D點表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震發(fā)生后,全國人民抗震救災(zāi),眾志成城,值地震發(fā)生一周年之際,某地政府又籌集了重建家園的必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

5

8

10

汽車運費(元/輛)

400

500

600

(1)全部物資可用甲型車8輛,乙型車5輛,丙型車 來運送.

(2)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(3)為了節(jié)省運費,該地政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能分別求出三種車型的輛數(shù)嗎?此時的運費又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點

1)求,的值;

2)已知點,過點作平行于軸的直線,交直線于點,過點作平行于軸的直線,交函數(shù)的圖象于點

①當(dāng)時,判斷線段的數(shù)量關(guān)系,并說明理由;

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

3)設(shè),是這個反比例函數(shù)圖象上任意不重合的兩點,,試判斷,的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的角平分線BDCE相交于點P.

(1)如果A=80,求BPC= .

(2)如圖,過點P作直線MNBC,分別交ABAC于點MN,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示) .

(3)將直線MN繞點P旋轉(zhuǎn)。

(i)當(dāng)直線MNAB,AC的交點仍分別在線段ABAC上時,如圖,試探索MPB,NPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

(ii)當(dāng)直線MNAB的交點仍在線段AB,而與AC的交點在AC的延長線上時,如圖,試問(i)MPB,NPC,A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請說明你的理由;若不成立,請給出MPBNPC,A三者之間的數(shù)量關(guān)系,并說明你的理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1 , 它與x軸交于兩點O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,它交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進行下去,直至得到C7 , 若點P(13,m)在第7段拋物線C7上,則m=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 ABCD 中,∠A=160°,∠B=50°,∠ADC、∠BCD 的平分線相交于點E,則∠CED=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,對角線交于點,,點分別是的中點,于點.有下列4個結(jié)論:①;②;③;④,其中說法正確的有(  )

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案