【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)的圖象與直線交于點(diǎn).
(1)求,的值;
(2)已知點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),過(guò)點(diǎn)作平行于軸的直線,交函數(shù)的圖象于點(diǎn).
①當(dāng)時(shí),判斷線段與的數(shù)量關(guān)系,并說(shuō)明理由;
②若,結(jié)合函數(shù)的圖象,直接寫(xiě)出的取值范圍.
(3)設(shè),是這個(gè)反比例函數(shù)圖象上任意不重合的兩點(diǎn),,,試判斷,的大小,并說(shuō)明理由.
【答案】(1)的值為3,的值為1;(2)①,詳見(jiàn)解析;②或;(3),理由詳見(jiàn)解析
【解析】
(1)代入直線中求出m,然后再代入中求出k即可;
(2)①把n=1代入,分別求出M,N的坐標(biāo),然后求出PM,PN長(zhǎng)判斷即可;
②根據(jù)分別表示出M和N的坐標(biāo),然后寫(xiě)出PM,PN長(zhǎng),根據(jù)求出n的取值范圍即可;
(3),是這個(gè)反比例函數(shù)圖象上任意不重合的兩點(diǎn),從而得到y1與x1、y2與x2的關(guān)系,然后只需運(yùn)用作差法就可解決問(wèn)題.
(1)函數(shù)的圖象與直線交于,
,
把代入得,
,
∴的值為3,的值為1;
(2)①當(dāng)時(shí),,
令,代入得,
解得:,
∴,
∴,
令,代入,,
∴,
∴,
;
②,點(diǎn)在直線上,過(guò)點(diǎn)作平行于軸的直線,交直線于點(diǎn),
∴,
∴PM=2,
∴N點(diǎn)坐標(biāo)為,
∴PN=,
由題意知,即,
∴,
∴或,
∵n>0,
∴由解得:,
由解得:,
或;
(3),理由如下:
,是函數(shù)圖象上的任意不重合的兩點(diǎn),
,,,
,,
,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)(x3)2.(﹣x4)3
(2)(x5y4﹣x4y3)x3y3
(3)(2a+1)2﹣(2a+1)(2a﹣1)
(4)102+×(π﹣3.14)0﹣|﹣302|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,D、E分別為AB,AC邊上的中點(diǎn),連接DE,將△ADE繞點(diǎn)E旋轉(zhuǎn)180°得到△CFE,連接AF,AC.
(1)求證:四邊形ADCF是菱形;
(2)若BC=8,AC=6,求四邊形ABCF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要測(cè)量河寬,可在兩岸找到相對(duì)的兩點(diǎn)A、B,先從B出發(fā)與AB成90°方向向前走50米,到C處立一標(biāo)桿,然后方向不變繼續(xù)朝前走10米到D處,在D處轉(zhuǎn)90°,沿DE方向走到E處,若A、C、E三點(diǎn)恰好在同一直線上,且DE=17米,你能根據(jù)題目提供的數(shù)據(jù)和圖形求出河寬嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道對(duì)于一個(gè)圖形,通過(guò)不同的方法計(jì)算圖形的面積可以得到一個(gè)數(shù)學(xué)等式.
例如:由圖1可得到(a+b)=a+2ab+b.
圖1 圖2 圖3
(1)寫(xiě)出由圖2所表示的數(shù)學(xué)等式:_____________________;寫(xiě)出由圖3所表示的數(shù)學(xué)等式:_____________________;
(2)利用上述結(jié)論,解決下面問(wèn)題:已知a+b+c=11,bc+ac+ab=38,求a+b+c的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC>∠ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點(diǎn) E,則∠AEC與∠ADC、∠ABC 之間存在的等量關(guān)系是( )
A. ∠AEC=∠ABC﹣2∠ADC B. ∠AEC=
C. ∠AEC= ∠ABC﹣∠ADC D. ∠AEC=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在平行四邊形ABCD中,E為BC邊上一點(diǎn),連結(jié)AE、BD且AE=AB
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直角三角形的斜邊在軸的正半軸上,點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,且,若將繞著點(diǎn)旋轉(zhuǎn)后30°,點(diǎn)和點(diǎn)分別落在點(diǎn)和點(diǎn)處,那么直線的解析式是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖所示,在直角坐標(biāo)系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3, 已知A(1,3),A1 (2,3), A2 (4,3), A3 (8,3),B(2,0), B1 (4,0), B2 (8,0), B3 (16,0),觀察每次變換前后的三角形有何變化,找出規(guī)律,按此變換規(guī)律將△OA3B3變換成△OAnBn, ,則An的坐標(biāo)是_______ ,Bn的坐標(biāo)是_________ .
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com