【題目】如圖,數(shù)軸上線段AB=2(單位長(zhǎng)度),線段CD=4(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是-10,點(diǎn)C在數(shù)軸上表示的數(shù)是16.若線段AB以每秒6個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),同時(shí)線段CD以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t s.
(1)當(dāng)點(diǎn)B與點(diǎn)C相遇時(shí),點(diǎn)A、點(diǎn)D在數(shù)軸上表示的數(shù)分別為________;
(2)當(dāng)t為何值時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;
(3)當(dāng)運(yùn)動(dòng)到BC=8(單位長(zhǎng)度)時(shí),求出此時(shí)點(diǎn)B在數(shù)軸上表示的數(shù).
【答案】(1)8,14(2)當(dāng)t為時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合(3) 4或16
【解析】
試題根據(jù)圖示易求B點(diǎn)表示的數(shù)是﹣8,點(diǎn)D表示的數(shù)是20.
(1)由速度×時(shí)間=距離列出方程(6+2)t=24,則易求t=3.據(jù)此可以求得點(diǎn)A、D移動(dòng)后所表示的數(shù);
(2)C、D的中點(diǎn)所表示的數(shù)是18,則依題意,得(6+2)t=26,則易求t的值;
(3)需要分類討論,當(dāng)點(diǎn)B在點(diǎn)C的左側(cè)和右側(cè)兩種情況.
試題解析:解:如圖,∵AB=2(單位長(zhǎng)度),點(diǎn)A在數(shù)軸上表示的數(shù)是﹣10,∴B點(diǎn)表示的數(shù)是﹣10+2=﹣8.
又∵線段CD=4(單位長(zhǎng)度),點(diǎn)C在數(shù)軸上表示的數(shù)是16,∴點(diǎn)D表示的數(shù)是20.
(1)根據(jù)題意,得
(6+2)t=|﹣8﹣16|=24,即8t=24,解得,t=3.
則點(diǎn)A表示的數(shù)是6×3﹣|﹣10|=8,點(diǎn)D在數(shù)軸上表示的數(shù)是20﹣2×3=14.
故答案為:8、14;
(2)C、D的中點(diǎn)所表示的數(shù)是18,則依題意,得
(6+2)t=26,解得t=.
答:當(dāng)t為時(shí),點(diǎn)B剛好與線段CD的中點(diǎn)重合;
(3)當(dāng)點(diǎn)B在點(diǎn)C的左側(cè)時(shí),依題意得:
(6+2)t+8=24,解得t=2,此時(shí)點(diǎn)B在數(shù)軸上所表示的數(shù)是4;
當(dāng)點(diǎn)B在點(diǎn)C的右側(cè)時(shí),依題意得到:
(6+2)t=32,解得t=4,此時(shí)點(diǎn)B在數(shù)軸上所表示的數(shù)是24﹣8=16.
綜上所述,點(diǎn)B在數(shù)軸上所表示的數(shù)是4或16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上的A,B,C三點(diǎn)所表示的數(shù)分別為a,b,c,其中AB=BC.如果,那么該數(shù)軸的原點(diǎn)O的位置應(yīng)該在( )
A.點(diǎn)A的左邊
B.點(diǎn)A與點(diǎn)B之間
C.點(diǎn)B與點(diǎn)C之間(靠近點(diǎn)B)
D.點(diǎn)C的右邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,E是AB延長(zhǎng)線上一點(diǎn),分別以AB、BE為一邊在直線AE同側(cè)作正方形ABCD和正方形BEFG,連接AG、CE.
(1)試探究線段AG與CE的大小關(guān)系,并證明你的結(jié)論;
(2)若AG恰平分∠BAC,且BE=1,試求AB的長(zhǎng);
(3)將正方形BEFG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)一個(gè)銳角后,如圖②,問(wèn)(1)中結(jié)論是否仍然成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與⊙O,AB是⊙O的直徑,AD⊥于點(diǎn)D.
(1)如圖①,當(dāng)直線與⊙O相切于點(diǎn)C時(shí),若∠DAC=30°,求∠BAC的大。
(2)如圖②,當(dāng)直線與⊙O相交于點(diǎn)E、F時(shí),若∠DAE=18°,求∠BAF的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次暑假旅游中,小明在湖泊的游船上(A處),測(cè)得湖西岸的山峰(C處)和湖東岸的山峰(D處)的仰角都是45°,游船向東航行100米后到達(dá)B處,測(cè)得C、D兩處的仰角分別為30°,60°,試求出C、D兩座山的高度為多少米?(結(jié)果保留整數(shù))(≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù) y=的圖像經(jīng)過(guò)點(diǎn)A(-1,a),過(guò)點(diǎn)A作AB⊥x軸,垂足為點(diǎn)B,△AOB的面積為.
(1)求a、k的值;
(2)若一次函數(shù)y=mx+n圖像經(jīng)過(guò)點(diǎn)A和反比例函數(shù)圖像上另一點(diǎn),且與x軸交于M點(diǎn),求AM的值:
(3)在(2)的條件下,如果以線段AM為一邊作等邊△AMN,頂點(diǎn)N在一次數(shù)函數(shù)y=bx上,則b= ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF繞著邊AB的中點(diǎn)D旋轉(zhuǎn), DE,DF分別交線段AC于點(diǎn)M,K.
(1)觀察: ①如圖2、圖3,當(dāng)∠CDF=0° 或60°時(shí),AM+CK_______MK(填“>”,“<”或“=”).
②如圖4,當(dāng)∠CDF=30° 時(shí),AM+CK___MK(只填“>”或“<”).
(2)猜想:如圖1,當(dāng)0°<∠CDF<60°時(shí),AM+CK_______MK,證明你所得到的結(jié)論.
(3)如果,請(qǐng)直接寫(xiě)出∠CDF的度數(shù)和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在同一直線道路上同起點(diǎn)、同方向、同時(shí)出發(fā),分別以不同的速度勻速跑步1000米,甲超出乙150米時(shí),甲停下來(lái)等候乙,甲、乙會(huì)合后,兩人分別以原來(lái)的速度繼續(xù)跑向終點(diǎn),先到終點(diǎn)的人在終點(diǎn)休息,在跑步的整個(gè)過(guò)程中,甲、乙兩人的距離y(米)與乙出發(fā)的時(shí)間x(秒)之間的關(guān)系如圖所示,則甲到終點(diǎn)時(shí),乙距離終點(diǎn)還有_____米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某市中學(xué)生參加“科普知識(shí)”競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),整理并制作出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示,
組別 | 分?jǐn)?shù)段(分) | 頻數(shù) | 頻率 |
A組 | 30 | 0.1 | |
B組 | 90 | ||
C組 | 0.4 | ||
D組 | 60 | 0.2 |
請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:
(1)在表中: , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)小明的成績(jī)是所有被抽查學(xué)生的中位數(shù),據(jù)此推斷他的成績(jī)?cè)?/span> 組;
(4)4個(gè)小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎(jiǎng)典禮,恰好抽中A、C兩組學(xué)生的概率是多少?并列表或畫(huà)樹(shù)狀圖說(shuō)明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com