【題目】如圖1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF繞著邊AB的中點(diǎn)D旋轉(zhuǎn), DE,DF分別交線段AC于點(diǎn)M,K.
(1)觀察: ①如圖2、圖3,當(dāng)∠CDF=0° 或60°時(shí),AM+CK_______MK(填“>”,“<”或“=”).
②如圖4,當(dāng)∠CDF=30° 時(shí),AM+CK___MK(只填“>”或“<”).
(2)猜想:如圖1,當(dāng)0°<∠CDF<60°時(shí),AM+CK_______MK,證明你所得到的結(jié)論.
(3)如果,請(qǐng)直接寫出∠CDF的度數(shù)和的值.
【答案】(1);(2),證明見解析;(3)∠CDF的度數(shù)為45°,的值為.
【解析】(1)先證明△CDA是等腰三角形,再根據(jù)等腰三角形的性質(zhì)證明AM+CK=MK;在△MKD中,AM+CK>MK(兩邊之和大于第三邊);
(2)作點(diǎn)C關(guān)于FD的對(duì)稱點(diǎn)G,連接GK,GM,GD.證明△ADM≌△GDM后,根據(jù)全等三角形的性質(zhì),GM=AM,GM+GK>MK,∴AM+CK>MK;
(3)根據(jù)勾股定理的逆定理求得∠GKM=90°,又∵點(diǎn)C關(guān)于FD的對(duì)稱點(diǎn)G,∴<CKG=90°,<FKC=<CKG=45°,根據(jù)三角形的外角定理,就可以求得∠CDF=15°;在Rt△GKM中,∠MGK=∠DGK+∠MGD=∠A+∠ACD=60°,∴∠GMK=30°,利用余弦定理解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:一次函數(shù)的表達(dá)式為y=x﹣1
(1)該函數(shù)與x軸交點(diǎn)坐標(biāo)為 ,與y軸的交點(diǎn)坐標(biāo)為 ;
(2)畫出該函數(shù)的圖象(不必列表);
(3)根據(jù)該函數(shù)的圖象回答下列問題:
①當(dāng)x 時(shí),則y>0;
②當(dāng)﹣2≤x<4時(shí),則y的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年宜賓市創(chuàng)建全國(guó)文明城市的過(guò)程中,某小區(qū)決定購(gòu)買文明用語(yǔ)提示牌和文明信息公示欄.若購(gòu)買2個(gè)提示牌和3個(gè)公示欄需要510元;購(gòu)買3個(gè)提示牌和5個(gè)公示欄需要840元.
(1)求提示牌和公示欄的單價(jià)各是多少元?
(2)若該小區(qū)購(gòu)買提示牌和公示欄共50個(gè),要求購(gòu)買公示欄至少12個(gè),且總費(fèi)用不超過(guò)3200元.請(qǐng)你列舉出所有購(gòu)買方案,并指出哪種方案費(fèi)用最少,最少費(fèi)用為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點(diǎn),M為AB中點(diǎn)、N為DE中點(diǎn),連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以點(diǎn)A為頂點(diǎn)作等腰Rt△ABC,其中∠BAC=∠DAE=90°,如圖1所示放置,使得一直角邊重合,連接BD、CE,延長(zhǎng)BD交CE于點(diǎn)F.
(1)試判斷BD、CE的關(guān)系,并說(shuō)明理由;
(2)把兩個(gè)等腰直角三角形按如圖2所示放置,(1)中的結(jié)論是否仍成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,正方形A的一個(gè)頂點(diǎn)與正方形B的對(duì)稱中心重合,重疊部分面積是正方形A面積的,如圖②,移動(dòng)正方形A的位置,使正方形B的一個(gè)頂點(diǎn)與正方形A的對(duì)稱中心重合,則重疊部分面積是正方形B面積的( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F是四邊形ABCD對(duì)角線AC上的兩點(diǎn),AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;
(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在下面平面直角坐標(biāo)系中,已知A ,B ,C 三點(diǎn).其中滿足.
(1)求的值;
(2)如果在第二象限內(nèi)有一點(diǎn) ,請(qǐng)用含的式子表示四邊形的面積;
(3)在(2)的條件下,是否存在點(diǎn),使四邊形的面積為△的面積的兩倍?若存在,求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤.通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤.為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低元,則每天的銷售量是__________斤(用含的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com