【題目】閱讀下面的材料:
按照一定順序排列著的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項.排在第一位的數(shù)稱為第一項,記為,排在第二位的數(shù)稱為第二項,記為,依此類推,排在第位的數(shù)稱為第項,記為.所以,數(shù)列的一般形式可以寫成:.一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),那么這個數(shù)列叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用表示.如:數(shù)列1,3,5,7,…為等差數(shù)列,其中,公差為.
根據(jù)以上材料,解答下列問題:
(1)等差數(shù)列4,7,10,…的公差為_______,第6項是_______;
(2)如果一個數(shù)列是等差數(shù)列,且公差為,那么根據(jù)定義可得到:.
所以
;
;
;
……
由此,請你填空完成等差數(shù)列的通項公:;
(3)是不是等差數(shù)列,,,…的項?如果是,是第幾項?
【答案】(1)3 19;(2);(3)是等差數(shù)列的第2020項.
【解析】
(1)根據(jù)等差數(shù)列的定義,即可求解;
(2)根據(jù)等差數(shù)列的定義,即可得到等差數(shù)列的通項公式;
(3)先根據(jù)題意,寫出等差數(shù)列的通項公式,再把代入公式,進(jìn)行判斷即可.
(1)由等差數(shù)列公差的定義,得:d=7-4=3,第6項是:4+5×3=19.
故答案是:3,19;
(2)∵;;;……
∴.
故答案是:;
(3)由題意可知等差數(shù)列中的公差,,
則通項公式為:,
把代入公式,得,解得:,
∴是等差數(shù)列的第2020項.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣A、B兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1555萬元改造一所A類學(xué)校和兩所B類學(xué)校共需資金230萬元;改造兩所A類學(xué)校和一所B類學(xué)校共需資金205萬元
(1)改造一所A類學(xué)校和一所B類學(xué)校所需的資金分別是多少萬元?
(2)根據(jù)我市教育局規(guī)劃計劃今年對該縣A、B兩類學(xué)校進(jìn)行改造,要求改造的A類學(xué)校是B類學(xué)校的2倍多2所,在計劃投入資金不超過1555萬元的條件下,至多能改造多少所A類學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有四個外觀與質(zhì)地完全相同的小球,小球上分別標(biāo)有數(shù)字.將四個小球放置于不透明的盒子中,搖勻后,甲從中隨機(jī)抽取一個小球,記錄數(shù)字后放回?fù)u勻,乙再隨機(jī)抽取一個.
(1)請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率.
(2)若兩人抽取的數(shù)字和為的倍數(shù),則甲獲勝;若抽取的數(shù)字和為的倍數(shù),則乙獲勝,否則為平局.這個游戲公平嗎?請用所學(xué)的概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校餐廳中,一張桌子可坐6人,現(xiàn)有以下兩種擺放方式:
(1)當(dāng)有5張桌子時,第一種方式能坐 人,第二種方式能坐 人.
(2)當(dāng)有n張桌子時,第一種方式能坐 人,第二種方式能坐 人.
(3)新學(xué)期有200人在學(xué)校就餐,但餐廳只有60張這樣的餐桌,若你是老師,你打算選擇以下哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年某市為創(chuàng)評“全國文明城市”稱號,周末團(tuán)市委組織志愿者進(jìn)行宣傳活動.班主任梁老師決定從4名女班干部(小悅、小惠、小艷和小倩)中通過抽簽的方式確定2名女生去參加.
抽簽規(guī)則:將4名女班干部姓名分別寫在4張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機(jī)抽取一張卡片,記下姓名,再從剩余的3張卡片中隨機(jī)抽取第二張,記下姓名.
(1)該班男生“小剛被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機(jī)”);第一次抽取卡片“小悅被抽中”的概率為 ;
(2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結(jié)果,并求出“小惠被抽中”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:點P是△ABC內(nèi)部或邊上的點(頂點除外),在△PAB,△PBC,△PCA中,若至少有一個三角形與△ABC相似,則稱點P是△ABC的自相似點.
例如:如圖1,點P在△ABC的內(nèi)部,∠PBC=∠A,∠PCB=∠ABC,則△BCP∽△ABC,故點P為△ABC的自相似點.
請你運用所學(xué)知識,結(jié)合上述材料,解決下列問題:
在平面直角坐標(biāo)系中,點M是曲線C:上的任意一點,點N是x軸正半軸上的任意一點.
(1) 如圖2,點P是OM上一點,∠ONP=∠M, 試說明點P是△MON的自相似點; 當(dāng)點M的坐標(biāo)是,點N的坐標(biāo)是時,求點P 的坐標(biāo);
(2) 如圖3,當(dāng)點M的坐標(biāo)是,點N的坐標(biāo)是時,求△MON的自相似點的坐標(biāo);
(3) 是否存在點M和點N,使△MON無自相似點,?若存在,請直接寫出這兩點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為建設(shè)最美恩施,一旅游投資公司擬定在某景區(qū)用茶花和月季打造一片人工花海,經(jīng)市場調(diào)查,購買株茶花與株月季的費用相同,購買株茶花與株月季共需元.
(1)求茶花和月季的銷售單價;
(2)該景區(qū)至少需要茶花月季共株,要求茶花比月季多株,但訂購兩種花的總費用不超過元,該旅游投資公司怎樣購買所需總費用最低,最低費用是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的方程(2-a)x2+5x-3=0有實數(shù)解,則整數(shù)a的最大值是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com