【題目】如圖,在△ABC中,∠B=90°,tan∠C= ,AB=6cm.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿邊AB向點(diǎn)B以1cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始沿邊BC向點(diǎn)C以2cm/s的速度移動(dòng).若P,Q兩點(diǎn)分別從A,B兩點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過(guò)程中,△PBQ的最大面積是( )
A.18cm2
B.12cm2
C.9cm2
D.3cm2
【答案】C
【解析】解:∵tan∠C= ,AB=6cm,
∴ = = ,
∴BC=8,
由題意得:AP=t,BP=6﹣t,BQ=2t,
設(shè)△PBQ的面積為S,
則S= ×BP×BQ= ×2t×(6﹣t),
S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,
P:0≤t≤6,Q:0≤t≤4,
∴當(dāng)t=3時(shí),S有最大值為9,
即當(dāng)t=3時(shí),△PBQ的最大面積為9cm2;
故選C.
先根據(jù)已知求邊長(zhǎng)BC,再根據(jù)點(diǎn)P和Q的速度表示BP和BQ的長(zhǎng),設(shè)△PBQ的面積為S,利用直角三角形的面積公式列關(guān)于S與t的函數(shù)關(guān)系式,并求最值即可本題考查了有關(guān)于直角三角形的動(dòng)點(diǎn)型問(wèn)題,考查了解直角三角形的有關(guān)知識(shí)和二次函數(shù)的最值問(wèn)題,解決此類(lèi)問(wèn)題的關(guān)鍵是正確表示兩動(dòng)點(diǎn)的路程(路程=時(shí)間×速度);這類(lèi)動(dòng)點(diǎn)型問(wèn)題一般情況都是求三角形面積或四邊形面積的最值問(wèn)題,轉(zhuǎn)化為函數(shù)求最值問(wèn)題,直接利用面積公式或求和、求差表示面積的方法求出函數(shù)的解析式,再根據(jù)函數(shù)圖象確定最值,要注意時(shí)間的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O是邊長(zhǎng)為4cm的正方形ABCD的中心,M是BC的中點(diǎn),動(dòng)點(diǎn)P由A開(kāi)始沿折線A﹣B﹣M方向勻速運(yùn)動(dòng),到M時(shí)停止運(yùn)動(dòng),速度為1cm/s.設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t(s),點(diǎn)P的運(yùn)動(dòng)路徑與OA、OP所圍成的圖形面積為S(cm2),則描述面積S(cm2)與時(shí)間t(s)的關(guān)系的圖象可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校將為初一學(xué)生開(kāi)設(shè)ABCDEF共6門(mén)選修課,現(xiàn)選取若干學(xué)生進(jìn)行了“我最喜歡的一門(mén)選修課”調(diào)查,將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表(不完整)
選修課 | A | B | C | D | E | F |
人數(shù) | 40 | 60 | 100 |
根據(jù)圖表提供的信息,下列結(jié)論錯(cuò)誤的是( 。
A.這次被調(diào)查的學(xué)生人數(shù)為400人
B.扇形統(tǒng)計(jì)圖中E部分扇形的圓心角為72°
C.被調(diào)查的學(xué)生中喜歡選修課E,F(xiàn)的人數(shù)分別為80,70
D.喜歡選修課C的人數(shù)最少
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)M、N是∠ABC與∠ACB三等分線的交點(diǎn),若∠A=60°,則∠BMN的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為增強(qiáng)學(xué)生體質(zhì),各學(xué)校普遍開(kāi)展了陽(yáng)光體育活動(dòng),某校為了解全校1000名學(xué)生每周課外體育活動(dòng)時(shí)間的情況,隨機(jī)調(diào)查了其中的50名學(xué)生,對(duì)這50名學(xué)生每周課外體育活動(dòng)時(shí)間x(單位:小時(shí))進(jìn)行了統(tǒng)計(jì).根據(jù)所得數(shù)據(jù)繪制了一幅不完整的統(tǒng)計(jì)圖,并知道每周課外體育活動(dòng)時(shí)間在6≤x<8小時(shí)的學(xué)生人數(shù)占24%.根據(jù)以上信息及統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)本次調(diào)查屬于調(diào)查,樣本容量是;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖中空缺的部分;
(3)求這50名學(xué)生每周課外體育活動(dòng)時(shí)間的平均數(shù);
(4)估計(jì)全校學(xué)生每周課外體育活動(dòng)時(shí)間不少于6小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點(diǎn)D,AE⊥BC,垂足為E,且CF∥AD.
(1)如圖1,若△ABC是銳角三角形,∠B=30°,∠ACB=70°,則∠CFE= 度;
(2)若圖1中的∠B=x,∠ACB=y,則∠CFE= ;(用含x、y的代數(shù)式表示)
(3)如圖2,若△ABC是鈍角三角形,其他條件不變,則(2)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(5,0),菱形OABC的頂點(diǎn)B,C都在第一象限,tan∠AOC= ,將菱形繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<∠α<∠AOC)得到菱形FADE(點(diǎn)O的對(duì)應(yīng)點(diǎn)為點(diǎn)F),EF與OC交于點(diǎn)G,連結(jié)AG.
(1)求點(diǎn)B的坐標(biāo).
(2)當(dāng)OG=4時(shí),求AG的長(zhǎng).
(3)求證:GA平分∠OGE.
(4)連結(jié)BD并延長(zhǎng)交x軸于點(diǎn)P,當(dāng)點(diǎn)P的坐標(biāo)為(12,0)時(shí),求點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,∠B=30°,CE平分∠ACB交⊙O于E,交AB于點(diǎn)D,連接AE,則S△ADE:S△CDB的值等于( )
A.1:
B.1:
C.1:2
D.2:3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某飲料廠生產(chǎn)一種飲料,經(jīng)測(cè)算,用1噸水生產(chǎn)的飲料所獲利潤(rùn)y(元)是1噸水的價(jià)格x(元)的一次函數(shù).
(1)根據(jù)下表提供的數(shù)據(jù),求y與x的函數(shù)關(guān)系式;當(dāng)水價(jià)為每噸10元時(shí),1噸水生產(chǎn)出的飲料所獲的利潤(rùn)是多少?
1噸水價(jià)格x(元) | 4 | 6 |
用1噸水生產(chǎn)的飲料所獲利潤(rùn)y(元) | 200 | 198 |
(2)為節(jié)約用水,這個(gè)市規(guī)定:該廠日用水量不超過(guò)20噸時(shí),水價(jià)為每噸4元;日用水量超過(guò)20噸時(shí),超過(guò)部分按每噸40元收費(fèi).已知該廠日用水量不少于20噸,設(shè)該廠日用水量為t噸,當(dāng)日所獲利潤(rùn)為W元,求W與t的函數(shù)關(guān)系式;該廠加強(qiáng)管理,積極節(jié)水,使日用水量不超過(guò)25噸,但仍不少于20噸,求該廠的日利潤(rùn)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com