【題目】為“節(jié)能減排,保護環(huán)境”,某村計劃建造A、B兩種型號的沼氣池共20個,以解決所有農戶的燃料問題.據(jù)市場調查:建造A、B兩種型號的沼氣池各1個,共需費用5萬元;建造A型號的沼氣池3個,B種型號的沼氣池4個,共需費用18萬元.
(1)求建造A、B兩種型號的沼氣池造價分別是多少?
(2)設建造A型沼氣池x個,總費用為y萬元,求y與x之間的函數(shù)關系式;若要使投入總費用不超過52萬元,至少要建造A型沼氣池多少個?
【答案】(1)建造A、B兩種型號的沼氣池造價分別是2萬元、3萬元(2)要使投入總費用不超過52萬元,至少要建造A型沼氣池8個
【解析】
(1)根據(jù)建造A、B兩種型號的沼氣池造價分別是x萬元,y萬元,利用建造A、B兩種型號的沼氣池各1個,共需費用5萬元;建造A型號的沼氣池3個,B種型號的沼氣池4個,共需費用18萬元,得出等式方程,求出即可;
(2)根據(jù)建造A型沼氣池x個,總費用為y萬元,得出y與x之間的函數(shù)關系式,根據(jù)投入總費用不超過52萬元,即可得出x的取值范圍.
解:(1)設建造A、B兩種型號的沼氣池造價分別是x萬元,y萬元,
依題意,得 ,
解得x=2,y=3,
答:建造A、B兩種型號的沼氣池造價分別是2萬元、3萬元;
(2)y=2x+3(20﹣x)=﹣x+60,
當y≤52時,60﹣x≤52,
解得x≥8,
答:要使投入總費用不超過52萬元,至少要建造A型沼氣池8個.
科目:初中數(shù)學 來源: 題型:
【題目】已知點A為某封閉圖形邊界上一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周,設點P運動的時間為x,線段AP的長為y,表示y與x的函數(shù)關系的圖象大致如圖所示,則該封閉圖形可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l:y=﹣x+4,在直線l上取點B1,過B1分別向x軸,y軸作垂線,交x軸于A1,交y軸于C1,使四邊形OA1B1C1為正方形;在直線l上取點B2,過B2分別向x軸,A1B1作垂線,交x軸于A2,交A1B1于C2,使四邊形A1A2B2C2為正方形;按此方法在直線l上順次取點B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,則A3的坐標為___,B5的坐標為___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線C1:y=ax2+bx-1經(jīng)過點A(-2,1)和點B(-1,-1),拋物線C2:y=2x2+x+1,動直線x=t與拋物線C1交于點N,與拋物線C2交于點M.
(1)求拋物線C1的表達式;
(2)直接用含t的代數(shù)式表示線段MN的長;
(3)當△AMN是以MN為直角邊的等腰直角三角形時,求t的值;
(4)在(3)的條件下,設拋物線C1與y軸交于點P,點M在y軸右側的拋物線C2上,連接AM交y軸于點K,連接KN,在平面內有一點Q,連接KQ和QN,當KQ=1且∠KNQ=∠BNP時,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形ABCD中,AB=6,M為對角線BD上任意一點(不與B、D重合),連接CM,過點M作MN⊥CM,交線段AB于點N
(1)求證:MN=MC;
(2)若DM:DB=2:5,求證:AN=4BN;
(3)如圖②,連接NC交BD于點G.若BG:MG=3:5,求NGCG的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A是拋物線y=ax2+bx+c的頂點,點B(0,2)是拋物線與y軸的交點,直線BC平行于x軸,交拋物線于點C,D為x軸上任意一點,若S△ABC=3,S△BCD=2,則點A的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從相距420km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達C地后因有事立即按原路原速返回A地,乙車從B地直達A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時間x(小時)的關系如圖所示,結合圖象信息回答下列問題:
(1)甲車的速度是 千米/時,乙車的速度是 千米/時;
(2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時間x(小時)之間的函數(shù)關系式;
(3)甲車出發(fā)多長時間后兩車相距90千米?請你直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關系為 ,位置關系為 ;
(2)(拓展研究)
將△ADE繞點A旋轉,(1)中的結論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當AB=2,AD=,△ADE旋轉得到D,E,F三點共線時,直接寫出線段DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】十三五”以來,黨中央,國務院不斷加大脫貧攻堅的支持決策力度,并出臺配套文件,國家機關各部門也出臺多項政策文件或實施方案.某單位認真分析被幫扶人各種情況后,建議被幫扶人大力推進特色產(chǎn)業(yè),大量栽種甜橙;同時搭建電商運營服務平臺,開設網(wǎng)店銷售農產(chǎn)品橙.豐收后,將一批甜橙采取現(xiàn)場銷售和網(wǎng)絡銷售相結合進行試銷,統(tǒng)計后發(fā)現(xiàn):同樣多的甜橙,現(xiàn)場銷售可獲利800元,網(wǎng)絡銷售則可獲利1000元,網(wǎng)絡銷售比現(xiàn)場銷售每件多獲利5元
(1)現(xiàn)場銷售和網(wǎng)絡銷售每件分別多少元?
(2)根據(jù)甜橙試銷情況分析,現(xiàn)場銷售量a(件)和網(wǎng)絡銷售量b(件)滿足如下關系式:b=﹣a2+12a﹣200.求a為何值時,農戶銷售甜橙獲得的總利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com