【題目】如圖,⊙O的內(nèi)接正五邊形ABCDE的對角線AD與BE相交于點G,AE=2,則EG的長是

【答案】 ﹣1
【解析】解:在⊙O的內(nèi)接正五邊形ABCDE中,設(shè)EG=x, 易知:∠AEB=∠ABE=∠EAG=36°,
∠BAG=∠AGB=72°,
∴AB=BG=AE=2,
∵∠AEG=∠AEB,∠EAG=∠EBA,
∴△AEG∽△BEA,
∴AE2=EGEB,
∴22=x(x+2),
解得x=﹣1+ 或﹣1﹣ ,
∴EG= ﹣1,
故答案為 ﹣1.
在⊙O的內(nèi)接正五邊形ABCDE中,設(shè)EG=x,易知:∠AEB=∠ABE=∠EAG=36°,∠BAG=∠AGB=72°,推出AB=BG=AE=2,由△AEG∽△BEA,可得AE2=EGEB,可得22=x(x+2),解方程即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】全面兩孩政策實施后,甲、乙兩個家庭有了各自的規(guī)劃,假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB90°,∠BOC比∠AOC30°OD是∠AOB的平分線,求∠COD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(
A.圓內(nèi)接正六邊形的邊長與該圓的半徑相等
B.在平面直角坐標(biāo)系中,不同的坐標(biāo)可以表示同一點
C.一元二次方程ax2+bx+c=0(a≠0)一定有實數(shù)根
D.將△ABC繞A點按順時針方向旋轉(zhuǎn)60°得△ADE,則△ABC與△ADE不全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF∥GH,A、DGH上的兩點,M、BEF上的兩點,延長AM于點C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的外接圓為⊙O,點P在劣弧上(不與C點重合).
(1)求∠BPC的度數(shù);
(2)若⊙O的半徑為8,求正方形ABCD的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合內(nèi):

﹣2.5,0,8,﹣2,, ﹣0.5252252225…(每兩個5之間依次增加12).

(1)正數(shù)集合:{ …};

(2)負(fù)數(shù)集合:{ …};

(3)整數(shù)集合:{ …};

(4)無理數(shù)集合:{ …}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段AB4.8cm,點C是線段AB的中點,點D是線段CB的中點,點E在線段AB上,且CEAC,畫圖并計算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E,
(1)求證:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.

查看答案和解析>>

同步練習(xí)冊答案