【題目】如圖,∠A=∠B90°,EAB上的一點,且AEBC,∠1=∠2

求證:△CED是等腰直角三角形

證明:∵∠1=∠2   

EC   (在一個三角形中,等角對等邊)

∵∠A=∠B90°,AEBC

∴△AED≌△BCE   

∴∠AED=∠      

∵∠BCE+BEC90°

   +BEC90°(等量代換)

∴∠DEC90°

∴△CED是等腰直角三角形.

【答案】已知,DEHL,BCE,全等三角形的性質(zhì),AED

【解析】

根據(jù)∠1=∠2,得到ECDE,證明AED≌△BCE全等,利用全等性質(zhì),找到CED是等腰直角三角形.

證明:∵∠1=∠2(已知)

ECDE(在一個三角形中,等角對等邊)

∵∠A=∠B90°,AEBC

∴△AED≌△BCEHL

∴∠AED=∠BCE(全等三角形的性質(zhì))

∵∠BCE+BEC90°

AED+BEC90°(等量代換)

∴∠DEC90°

∴△CED是等腰直角三角形.

故答案為:已知,DE,HL,BCE,全等三角形的性質(zhì),AED

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在銳角三角形ABC中,AHBC邊上的高,分別以AB,AC為一邊,向外作正方形ABDEACFG,連接CE,BGEG,EGHA的延長線交于點M,下列結論:①BG=CE;BGCE;AMAEG的中線;④∠EAM=ABC,其中正確結論的個數(shù)是(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1 、A2 、A3是拋物線y=x2上三點, A1B1 、A2B2 、A3B3 分別是垂直于x軸,垂足為B1 、B2 、B3 ,直線A2B2交線段A1A3于點C,若A1 、A2 、A3 三點的橫坐標依次為1、2、3,則線段CA2的長為___________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中菲黃巖島爭端持續(xù),我海監(jiān)船加大黃巖島附近海域的巡航維權力度.如圖,OA⊥OB,OA=36海里,OB=12海里,黃巖島位于O點,我國海監(jiān)船在點B處發(fā)現(xiàn)有一不明國籍的漁船,自A點出發(fā)沿著AO方向勻速駛向黃巖島所在地點O,我國海監(jiān)船立即從B處出發(fā)以相同的速度沿某直線去攔截這艘漁船,結果在點C處截住了漁船.

(1)請用直尺和圓規(guī)作出C處的位置;

(2)求我國海監(jiān)船行駛的航程BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖,后人稱其為趙爽弦圖(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若EF4,則S1+S2+S3的值是( 。

A.32B.38C.48D.80

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,邊的垂直平分線分別交邊于點、點,,則______°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知中,,DE,BD、CE交于點F,的平分線交于點O,則的度數(shù)為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過、兩點.

求拋物線的解析式;

如圖,點是直線上方拋物線上的一動點,當面積最大時,請求出點的坐標和面積的最大值?

的結論下,過點軸的平行線交直線于點,連接,點是拋物線對稱軸上的動點,在拋物線上是否存在點,使得以、、為頂點的四邊形是平行四邊形?如果存在,請直接寫出點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018123日,安徽省省政府新聞辦召開新聞發(fā)布會,通報了2017年全省經(jīng)濟運行情況。據(jù)省統(tǒng)計局新聞發(fā)言人趙金寶介紹,去年我省GDP突破19000億元,連續(xù)第十年保持兩位數(shù)增長,增速明顯高于全國,位居中部第一。初步核算,全年全省生產(chǎn)總值19033.3億元,按可比價格計算,比2015年增加3303.3億元,連續(xù)10年保持兩位數(shù)增長,增幅居全國第11、中部第1位。求自2015年起的年平均增長率。

查看答案和解析>>

同步練習冊答案