【題目】中,邊、的垂直平分線分別交邊于點(diǎn)、點(diǎn),,則______°.

【答案】80100

【解析】

根據(jù)題意,點(diǎn)D和點(diǎn)E的位置不確定,需分析誰靠近B點(diǎn),則有如下圖(圖見解析)兩種情況:(1)圖1中,點(diǎn)E距離點(diǎn)B近,根據(jù)垂直平分線性質(zhì)可知,,從而有,再根據(jù)三角形的內(nèi)角和定理可得,聯(lián)立即可求得;(2)圖2中,點(diǎn)D距離點(diǎn)B近,根據(jù)垂直平分線性質(zhì)可知,,從而有,由三角形的內(nèi)角和定理得,聯(lián)立即可求得.

由題意可分如下兩種情況:

1)圖1中,根據(jù)垂直平分線性質(zhì)可知,,

(等邊對等角),

兩式相加得,

由三角形內(nèi)角和定理得,

,

2)圖2中,根據(jù)垂直平分線性質(zhì)可知,,

(等邊對等角),

兩式相加得,

,

由三角形內(nèi)角和定理得,

.

故答案為80100.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)軸正半軸上一點(diǎn),且,點(diǎn)軸上位于點(diǎn)右側(cè)的一個(gè)動點(diǎn),設(shè)點(diǎn)的坐標(biāo)為

1)點(diǎn)的坐標(biāo)為( );

2)當(dāng)是等腰三角形時(shí),求點(diǎn)的坐標(biāo);

3)如圖2,過點(diǎn)交線段于點(diǎn),連接,若點(diǎn)關(guān)于直線的對稱點(diǎn)為,當(dāng)點(diǎn)恰好落在直線上時(shí), .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ΔP1OA1,ΔP2A1A2是等腰直角三角形,點(diǎn)P1、P2在函數(shù)y=(x>0)的圖象上,斜邊OA1、A1A2都在x軸上,則點(diǎn)A2的坐標(biāo)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)DE分別在AC,AB上,BDCE相交于點(diǎn)O,已知∠B=∠C,現(xiàn)添加下面的哪一個(gè)條件后,仍不能判定ABD≌△ACE的是( 。

A.ADAEB.ABACC.BDCED.ADB=∠AEC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B90°,EAB上的一點(diǎn),且AEBC,∠1=∠2

求證:△CED是等腰直角三角形

證明:∵∠1=∠2   

EC   (在一個(gè)三角形中,等角對等邊)

∵∠A=∠B90°,AEBC

∴△AED≌△BCE   

∴∠AED=∠      

∵∠BCE+BEC90°

   +BEC90°(等量代換)

∴∠DEC90°

∴△CED是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,邊長為的正方形的一個(gè)頂點(diǎn)在邊上,與另兩邊分

別交于點(diǎn)、,將正方形平移,使點(diǎn)保持在上(不與重合),設(shè),正方形與重疊部分的面積為

的函數(shù)關(guān)系式并寫出自變量的取值范圍;

為何值時(shí)的值最大?

在哪個(gè)范圍取值時(shí)的值隨的增大而減。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:x26x(x26x+9)9(x3)29;﹣x2+10=﹣(x210x+25)+25=﹣(x5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:

(1)按上面材料提示的方法填空:a24a      .﹣a2+12a      

(2)探究:當(dāng)a取不同的實(shí)數(shù)時(shí)在得到的代數(shù)式a24a的值中是否存在最小值?請說明理由.

(3)應(yīng)用:如圖.已知線段AB6MAB上的一個(gè)動點(diǎn),設(shè)AMx,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當(dāng)點(diǎn)MAB上運(yùn)動時(shí),長方形MBCN的面積是否存在最大值?若存在,請求出這個(gè)最大值;否則請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,ABAC,點(diǎn)D在邊BC上,點(diǎn)E在邊AC上,且ADAE

1)如圖1,當(dāng)AD是邊BC上的高,且∠BAD30°時(shí),求∠EDC的度數(shù);

2)如圖2,當(dāng)AD不是邊BC上的高時(shí),請判斷∠BAD與∠EDC之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,邊AB、BC的長(ABBC)是方程x2﹣7x+12=0的兩個(gè)根.點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿△ABCA→B→C→A的方向運(yùn)動,運(yùn)動時(shí)間為t(秒).

1)求ABBC的長;

2)當(dāng)點(diǎn)P運(yùn)動到邊BC上時(shí),試求出使AP長為時(shí)運(yùn)動時(shí)間t的值;

3)當(dāng)點(diǎn)P運(yùn)動到邊AC上時(shí),是否存在點(diǎn)P,使△CDP是等腰三角形?若存在,請求出運(yùn)動時(shí)間t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案