【題目】如圖,在梯形中,,,,.點(diǎn)是線段上的動(dòng)點(diǎn),點(diǎn)、分別是線段、上的點(diǎn),且,聯(lián)結(jié)、.
(1)求證:;
(2)當(dāng)時(shí),如果是以為腰的等腰三角形,求線段的長;
(3)當(dāng)時(shí),求的正切值.(用含的式子表示)
【答案】(1)詳見解析;(2);(3)
【解析】
(1)先利用兩邊對(duì)應(yīng)成比例,夾角相等,判斷出,得出∠DQE=∠BDC,即可得出結(jié)論;
(2)先用△DEQ∽△BCD,得出比例式表示出EQ,再分兩種情況,建立方程求解,即可得出結(jié)論;
(3)先判得出△PHQ∽△BGD,得出,進(jìn)而表示出,,即可得出結(jié)論.
解:(1)∵,∴.
∵,,∴.
∴.
∴,∴.
(2)設(shè)的長為,則,.
∵,∴,∴.
(ⅰ)當(dāng)時(shí),
∴,
∵,∴,∴,
∴,∴,∴,
解得,或(舍去).
(ⅱ)當(dāng)時(shí),
∴,解得,
∵,∴此種情況不存在.
∴.
(3)過點(diǎn)作,交的延長線于點(diǎn);過點(diǎn)作,垂足為點(diǎn).
∵,,∴,,
∵,∴.
∵,∴.
又∵,
∴.
∴,∴.
∴,.
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),矩形的另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時(shí),求OA的長;
(3)當(dāng)點(diǎn)A移動(dòng)到某一位置時(shí),點(diǎn)C到點(diǎn)O的距離有最大值,請(qǐng)直接寫出最大值,并求此時(shí)cos∠OAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為1,它的6條對(duì)角線圍成一個(gè)正六邊形A2B2C2D2E2F2;正六邊形A2B2C2D2E2F2的6條對(duì)角線又圍成一個(gè)正六邊形A3B3C3D3E3F3…;如此繼續(xù)下去,則六邊形A4B4C4D4E4F4的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,,點(diǎn)為上的一點(diǎn),以點(diǎn)為圓心,為半徑的圓弧與相切于點(diǎn),交于點(diǎn),連接.
(1)求證:平分;
(2)若,求圓弧的半徑;
(3)在的情況下,若,求陰影部分的面積(結(jié)果保留和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,BC∥OA,BC=3,OA=6,AB=3
(1)直接寫出點(diǎn)B的坐標(biāo)
(2)已知D.E分別為線段OC.OB上的點(diǎn),OD=5,OE=2BE,直線DE交x軸于點(diǎn)F,求直線DE的解析式
(3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O.D.M.N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC~△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,點(diǎn)D在線段BC上運(yùn)動(dòng),
(1)如圖1,求證:△ABD∽△ACE
(2)如圖2,當(dāng)AD⊥BC時(shí),判斷四邊形ADCE的形狀,并證明.
(3)當(dāng)點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),設(shè)P為線段DE的中點(diǎn),在點(diǎn)D的運(yùn)動(dòng)過程中,求CP的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),與軸交于點(diǎn),且與反比例函數(shù)在第一象限的圖象交于點(diǎn),軸于點(diǎn),.
(1)求點(diǎn)的坐標(biāo);
(2)動(dòng)點(diǎn)在軸上,軸交反比例函數(shù)的圖象于點(diǎn).若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com