【題目】解決問題:

如圖,半徑為4外有一點P,且,點A上,則PA的最大值和最小值分別是____________

如圖,扇形AOB的半徑為4,P為弧AB上一點,分別在OA邊找點E,在OB邊上找一點F,使得周長的最小,請在圖中確定點E、F的位置并直接寫出周長的最小值;

拓展應(yīng)用

如圖,正方形ABCD的邊長為ECD上一點不與D、C重合,F,PBE上,且,M、N分別是AB、AC上動點,求周長的最小值.

【答案】111,3;(2)圖見解析,周長最小值為;(3

【解析】

根據(jù)圓外一點P到這個圓上所有點的距離中,最遠(yuǎn)是和最近的點是過圓心和該點的直線與圓的交點,容易求出最大值與最小值分別為113;

作點P關(guān)于直線OA的對稱點,作點P關(guān)于直線OB的對稱點,連接、,與OA、OB分別交于點E、F,點E、F即為所求,此時周長最小,然后根據(jù)等腰直角三角形求解即可;

類似題作對稱點,周長最小,然后由三角形相似和勾股定理求解.

解:如圖,圓外一點P到這個圓上所有點的距離中,最大距離是和最小距離都在過圓心的直線OP上,

此直線與圓有兩個交點,圓外一點與這兩個交點的距離個分別最大距離和最小距離.

的最大值,

PA的最小值,

故答案為113;

如圖,以O為圓心,OA為半徑,畫弧AB和弧BD,作點P關(guān)于直線OA的對稱點,作點P關(guān)于直線OB的對稱點,連接,與OA、OB分別交于點EF,點E、F即為所求.

連接、、OP、PE、PF

由對稱知識可知,,,,

,

,

為等腰直角三角形,

,

周長,此時周長最。

故答案為

作點P關(guān)于直線AB的對稱,連接、,作點P關(guān)于直線AC的對稱,

連接、,與AB、AC分別交于點M、N.如圖③

由對稱知識可知,,周長,

此時,周長最小

由對稱性可知,,,,

,

為等腰直角三角形,

周長最小值,當(dāng)AP最短時,周長最小.

連接DF

,且,

,

,,

,

中,

,

,

,取AB中點O

F在以BC為直徑的圓上運動,當(dāng)DF、O三點在同一直線上時,DF最短.

最小值為

此時,周長最小值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在中,C、D分別為BMAM上的點,四邊形ABCD內(nèi)接于,連接AC,;

如圖,求證:弧BD;

如圖,若AB為直徑,,求值;

如圖,在的條件下,E為弧CD上一點不與C、D重合,FAB上一點,連接EFAC于點N,連接DN、DE,若,,,求AN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l上有兩動點C、D,點A、點B在直線l同側(cè),且A點與B點分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點CD之間的距離總為S米,使CA的距離與DB的距離之和最小,則AC+BD的最小值為(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)荊州市創(chuàng)建全國文明城市號召,某單位不斷美化環(huán)境,擬在一塊矩形空地上修建綠色植物園,其中一邊靠墻,可利用的墻長不超過18m,另外三邊由36m長的柵欄圍成.設(shè)矩形ABCD空地中,垂直于墻的邊AB=xm,面積為ym2(如圖).

(1)求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)若矩形空地的面積為160m2,求x的值;

(3)若該單位用8600元購買了甲、乙、丙三種綠色植物共400棵(每種植物的單價和每棵栽種的合理用地面積如下表).問丙種植物最多可以購買多少棵?此時,這批植物可以全部栽種到這塊空地上嗎?請說明理由.

單價(元/棵)

14

16

28

合理用地(m2/棵)

0.4

1

0.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△中,∠,點邊上一點,以為直徑的⊙與邊相切于點,與邊交于點,過點于點,連接

(1)求證:

(2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點,交軸于點,在軸上有一點,連接.

(1)求二次函數(shù)的表達(dá)式;

(2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;

(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大課間到了,小明和小歡兩人打算從教室勻速跑到600米外的操場做課間操,剛出發(fā)時小明就發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡則直接前往操場,小明系好鞋帶后立即沿同一路開始追趕小歡,小明在途中追上小歡后繼續(xù)前行,小明到達(dá)操場時課間操還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場,設(shè)小明和小歡兩人想距s(米),小歡行走的時間為t(分鐘),s關(guān)于t的函數(shù)的部分圖象如圖所示,當(dāng)兩人第三次相距60米時,小明離操場還有_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點P(﹣2,1)關(guān)于y軸的對稱點P,點Tt,0)是x軸上的一個動點,當(dāng)PTO是等腰三角形時,t的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點,交軸于點,直線過點軸交于點,與拋物線的另一個交點為,作軸于點.設(shè)點是直線上方的拋物線上一動點(不與點、重合),過點軸的平行線,交直線于點,作于點.

1)填空:__________,__________,__________

2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標(biāo);若不存在,請說明理由;

3)設(shè)的周長為,點的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并求出的最大值.

查看答案和解析>>

同步練習(xí)冊答案